The wormlike robots are capable of imitating amazing locomotion of slim creatures. This paper presents a novel centimeter-scale worm robot inspired by a kirigami parallel structure with helical motion. The motion characteristics of the kirigami structure are unravelled by analyzing the equivalent kinematic model in terms of screw theory. This reveals that the kirigami parallel structure with three degrees-of-freedom (DOF) motion is capable of implementing both peristalsis and inchworm-type motion. In light of the revealed motion characteristics, a segmented worm robot which is able to imitate contracting motion, bending motion of omega shape and twisting motion in nature is proposed by integrating kirigami parallel structures successively. Following the kinematic and static characteristics of the kirigami structure, actuation models are explored by employing the linear shape-memory-alloy (SMA) coil springs and the complete procedure for determining the geometrical parameters of the SMA coil springs. Actuation phases for the actuation model with two SMA springs are enumerated and with four SMA springs are calculated based on the Burnside's lemma. In this paper, a prototype of the worm robot with three segments is presented together with a paper-made body structure and integrated SMA coil springs. This centimeter-scale prototype of the worm robot is lightweight and can be used in confined environments for detection and inspection. The study presents an interesting approach of integrating SMA actuators in kirigami-enabled parallel structures for the development of compliant and miniaturized robots.

References

References
1.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
CRC Press
,
Boca Raton, FL
.
2.
Hoffmann
,
R.
,
2001
, “
Airbag Folding: Origami Design Applied to an Engineering Problem
,”
3rd International Meeting of Origami Science, Math, and Education
, Asilomar, CA, Mar. 9–11.
3.
Miura
,
K.
,
1989
, “
A Note on Intrinsic Geometry of Origami
,” Research of Pattern Formation, KTK Scientific Publishers, Tokyo, Japan, pp.
91
102
.
4.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Origami Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
10
), pp.
959
970
.10.1243/095440602760400931
5.
Cundy
,
H. M.
, and
Rollett
,
A. P.
,
1981
,
Mathematical Models
,
2nd ed.
,
Tarquin
,
Suffolk, VA
.
6.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.10.1115/1.2829470
7.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.10.1115/1.3046128
8.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.10.1115/1.4007920
9.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.10.1260/0266-3511.27.1.1
10.
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2010
, “
Origami-Based Robotic Paper-and-Board Packaging for Food Industry
,”
Trends Food Sci. Technol.
,
21
(
3
), pp.
153
157
.10.1016/j.tifs.2009.10.007
11.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
,
2010
, “
Geometry and Constraint Analysis of the 3-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031014
.10.1115/1.4001783
12.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2014
, “
A Novel 4-DOFs Origami Enabled, SMA Actuated, Robotic End-Effector for Minimally Invasive Surgery
,”
IEEE International Conference on Robotics and Automation
(
ICRA2014
), Hong Kong, May 31–June 7, Paper No. 1137.10.1109/ICRA.2014.6907267
13.
Balkcom
,
D. J.
, and
Matthew
,
T. M.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
.10.1177/0278364908090235
14.
Yao
,
W.
, and
Dai
,
J. S.
,
2008
, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022303
.10.1115/1.2813783
15.
Whitney
,
J. P.
,
Sreetharan
,
P. S.
,
Ma
,
K. Y.
, and
Wood
,
R. J.
,
2011
, “
Pop-Up Book MEMS
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115021
.10.1088/0960-1317/21/11/115021
16.
Paik
,
J.
,
An
,
B.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2012
, “
Robotic Origamis: Self-Morphing Modular Robots
,”
2nd International Conference on Morphological Computation
(
ICMC2011
), Venice, Italy, Sept. 12–14.
17.
Rodriguez-Leal
,
E.
, and
Dai
,
J. S.
,
2007
, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
ASME
Paper No. DETC2007-35516.10.1115/DETC2007-35516
18.
You
,
Z.
,
2007
, “
Motion Structures Extend Their Reach
,”
Mater. Today
,
10
(
12
), pp.
52
57
.10.1016/S1369-7021(07)70308-5
19.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell, L
,
L.
, 2013, “An Approach for Understanding Action Origami as Kinematic Mechanisms,”
ASME
Paper No. DETC2013-13407.10.1115/DETC2013-13407
20.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
, Jr.,
R. J.
, and
Lagoudas
,
D. C.
, 2014, “Origami-Inspired Active Structures: A Synthesis and Review,”
Smart Mat. Struct.
,
23
(9), p. 094001.10.1088/0964-1726/23/9/094001
21.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
, and
Simpson
,
T. W.
, 2015, “Development and Validation of a Dynamic Model of Magneto-Active Elastomer Actuation of the Origami Waterbomb Base,”
ASME J. Mech. Rob.
,
7
(1), p. 011010.10.1115/1.4029290
22.
Koh
,
J.
, and
Cho
,
K.
,
2010
, “
Omegabot: Crawling Robot Inspired by Ascotis Selenaria
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
109
114
.10.1109/ROBOT.2010.5509425
23.
Koh
,
J.
, and
Cho
,
K.
,
2013
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
419
429
.10.1109/TMECH.2012.2211033
24.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.10.1109/TMECH.2012.2210239
25.
Drewes
,
C. D.
,
1999
, “
Helical Swimming and Body Reversal Behaviors in Lumbriculus Variegatus (Annelida: Clitellata: Lumbriculidae)
,”
Hydrobiologia
,
406
, pp.
263
269
.10.1023/A:1003784100638
26.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.10.1115/1.4002691
27.
Temko
,
F.
, and
Takahama
,
T.
,
1978
,
The Magic of Kirigami: Happenings With Paper and Scissors
,
Japan Publications
, Kyoto, Japan.
28.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021014
.10.1115/1.4026337
29.
Davis
,
E.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Ramseyer
,
J.
,
2013
, “
Reconstructing David Huffman's Origami Tessellations
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111010
.10.1115/1.4025428
30.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
31.
Hunt
,
K. H.
,
1990
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
32.
Dai
,
J. S.
, 2012, “Finite Displacement Screw Operators with Embedded Chasles' Motion”,
ASME J. Mech. Rob.
,
4
(4), p. 041002.10.1115/1.4006951
33.
McCarthy
,
J. M.
,
2000
,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
34.
Gan
,
D.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
,
Caldwell
,
D. G.
, and
Seneviratne
,
L.
,
2013
, “
Stiffness Design for a Spatial 3-DOF Compliant Manipulator Based on Impact Configuration Decomposition
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011002
.10.1115/1.4007492
35.
An
,
S.-M.
,
Ryu
,
J.
,
Cho
,
M.
, and
Cho
,
K.-J.
,
2012
, “
Engineering Design Framework for a Shape Memory Alloy Coil Spring Actuator Using a Static Two-State Model
,”
Smart Mater. Struct.
,
21
(
5
), p.
055009
.10.1088/0964-1726/21/5/055009
36.
Wright
,
E. M.
,
1981
, “
Burnside's Lemma: A Historical Note
,”
J. Comb. Theory, Ser. B
,
30
(
1
), pp.
89
90
.10.1016/0095-8956(81)90095-2
You do not currently have access to this content.