This paper describes a method for manufacturing complex three-dimensional curved structures by self-folding layered materials. Our main focus is to first show that the material can cope with curved crease self-folding and then to utilize the curvature to predict the folding angles. The self-folding process employs uniform heat to induce self-folding of the material and shows the successful generation of several types of propellers as a proof of concept. We further show the resulting device is functional by demonstrating its levitation in the presence of a magnetic field applied remotely.

References

References
1.
Whitney
,
J. P.
,
Sreetharan
,
P. S.
,
Ma
,
K.
, and
Wood
,
R. J.
,
2011
, “
Pop-Up Book MEMS
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115021
.10.1088/0960-1317/21/11/115021
2.
Hoover
,
A. M.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
RoACH: An Autonomous 2.4g Crawling Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
26
33
.10.1109/IROS.2008.4651149
3.
Felton
,
S.
,
Lee
,
D. Y.
,
Cho
,
K. J.
, and
Wood
,
R. J.
,
2014
, “
A Passive, Origami-Inspired, Continuously Variable Transmission
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Hong Kong
, May 31–June 7, pp.
2913
2918
.10.1109/ICRA.2014.6907278
4.
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Koschitz
,
D.
, and
Tachi
,
T.
,
2011
, “
Curved Crease Folding: A Review on Art, Design and Mathematics
,”
35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures
(IABSE-IASS 2011),
London, UK
, Sept. 20–23.
5.
Koschitz
,
D.
,
Demaine
,
E. D.
, and
Demaine
,
M. L.
,
2008
, “
Curved Crease Origami
,”
Advances in Architectural Geometry (AAG 2008)
, Vienna, Austria, Sept. 13–16, pp.
29
32
.
6.
Huffman
,
D. A.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
100
(
10
), pp.
1010
1019
.10.1109/TC.1976.1674542
7.
Duncan
,
J. P.
, and
Duncan
,
J.
,
1982
, “
Folded Developables
,”
Proc. R. Soc. London, Ser. A
,
383
(
1784
), pp.
191
205
.10.1098/rspa.1982.0126
8.
Fuchs
,
D.
, and
Tabachnikov
,
S.
,
1999
, “
More on Paper Folding
,”
Am. Math. Mon.
,
106
(
1
), pp.
27
35
.10.2307/2589583
9.
Kergosien
,
Y. L.
,
Gotoda
,
H.
, and
Kunii
,
T. L.
,
1994
, “
Bending and Creasing Virtual Paper
,”
IEEE Comput. Appl.
,
14
(
1
), pp.
40
48
.10.1109/38.250917
10.
Dias
,
M. A.
, and
Santangelo
,
C. D.
,
2012
, “
The Shape and Mechanics of Curved-Fold Origami Structures
,”
Europhys. Lett.
,
100
(
5
), p.
54005
.10.1209/0295-5075/100/54005
11.
Tachi
,
T.
,
2013
, “
Composite Rigid-Foldable Curved Origami Structure
,” 1st International Conference on Transformable Architecture (Transformables 2013),
Seville, Spain
, Sept. 18–20.
12.
Yao
,
Z.
,
Bowick
,
M.
,
Ma
,
X.
, and
Sknepnek
,
R.
,
2013
, “
Planar Sheets Meet Negative-Curvature Liquid Interfaces
,”
Europhys. Lett.
,
101
(
4
), p.
44007
.10.1209/0295-5075/101/44007
13.
Kilian
,
M.
,
Flöry
,
S.
,
Chen
,
Z.
,
Mitra
,
N. J.
,
Sheffer
,
A.
, and
Pottmann
,
H.
,
2008
, “
Curved Folding
,”
ACM Trans. Graphics
,
27
(
3
), p.
75
.10.1145/1360612.1360674
14.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
15.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.10.1039/c3sm51003d
16.
Miyashita
,
S.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2013
, “
Self-Pop-Up Cylindrical Structure by Global Heating
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
4065
4071
.10.1109/IROS.2013.6696938
17.
Yasu
,
K.
, and
Inami
,
M.
,
2012
, “
POPAPY: Instant Paper Craft Made Up in a Microwave Oven
,”
9th International Conference on Advances in Computer Entertainment
(
ACE 2012
), Kathmandu, Nepal, Nov. 3–5, pp.
406
420
.10.1007/978-3-642-34292-9_29
18.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
IOP J. Smart Mater. Struct.
,
23
(
9
), p.
094006
.10.1088/0964-1726/23/9/094006
19.
Miyashita
,
S.
,
Meeker
,
L.
,
Göldi
,
M.
,
Kawahara
,
Y.
, and
Rus
,
D.
,
2014
, “
Self-Folding Printable Elastic Electric Devices: Resistor, Capacitor, and Inductor
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
1446
1453
.10.1109/ICRA.2014.6907042
20.
Guberan
,
C.
,
2012
, “Hydro-Fold,” ECAL/University of Art and Design Lausanne, Renens, Switzerland, http://vimeo.com/39914902
21.
Mitani
,
J.
,
2009
,
Fushigina Kyutai Rittai Origami
,
Futami Shobo
,
Tokyo
.
22.
Leishman
,
J. G.
, ed.,
2006
,
Principles of Helicopter Aerodynamics
,
2nd ed.
,
Cambridge University Press
, Cambridge, UK.
23.
Keys
,
C.
,
Tarzanin
,
F.
, and
McHugh
,
F.
,
1987
, “
Effect of Twist on Helicopter Performance and Vibratory Loads
,”
13th European Rotorcraft Forum
, Arles, France, Sept. 8–11.
24.
Miyashita
,
S.
,
Meeker
,
L.
,
Göldi
,
M.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
Self-Folding Miniature Elastic Electric Device
,”
IOP J. Smart Mater. Struct.
,
23
(
9
), p.
094005
.10.1088/0964-1726/23/9/094005
You do not currently have access to this content.