This paper describes a method for manufacturing complex three-dimensional curved structures by self-folding layered materials. Our main focus is to first show that the material can cope with curved crease self-folding and then to utilize the curvature to predict the folding angles. The self-folding process employs uniform heat to induce self-folding of the material and shows the successful generation of several types of propellers as a proof of concept. We further show the resulting device is functional by demonstrating its levitation in the presence of a magnetic field applied remotely.
Issue Section:
Research Papers
References
1.
Whitney
, J. P.
, Sreetharan
, P. S.
, Ma
, K.
, and Wood
, R. J.
, 2011
, “Pop-Up Book MEMS
,” J. Micromech. Microeng.
, 21
(11
), p. 115021
.10.1088/0960-1317/21/11/1150212.
Hoover
, A. M.
, Steltz
, E.
, and Fearing
, R. S.
, 2008
, “RoACH: An Autonomous 2.4g Crawling Hexapod Robot
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2008
), Nice, France, Sept. 22–26, pp. 26
–33
.10.1109/IROS.2008.46511493.
Felton
, S.
, Lee
, D. Y.
, Cho
, K. J.
, and Wood
, R. J.
, 2014
, “A Passive, Origami-Inspired, Continuously Variable Transmission
,” IEEE International Conference on Robotics and Automation
(ICRA
), Hong Kong
, May 31–June 7, pp. 2913
–2918
.10.1109/ICRA.2014.69072784.
Demaine
, E. D.
, Demaine
, M. L.
, Koschitz
, D.
, and Tachi
, T.
, 2011
, “Curved Crease Folding: A Review on Art, Design and Mathematics
,” 35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures
(IABSE-IASS 2011), London, UK
, Sept. 20–23.5.
Koschitz
, D.
, Demaine
, E. D.
, and Demaine
, M. L.
, 2008
, “Curved Crease Origami
,” Advances in Architectural Geometry (AAG 2008)
, Vienna, Austria, Sept. 13–16, pp. 29
–32
.6.
Huffman
, D. A.
, 1976
, “Curvature and Creases: A Primer on Paper
,” IEEE Trans. Comput.
, 100
(10
), pp. 1010
–1019
.10.1109/TC.1976.16745427.
Duncan
, J. P.
, and Duncan
, J.
, 1982
, “Folded Developables
,” Proc. R. Soc. London, Ser. A
, 383
(1784
), pp. 191
–205
.10.1098/rspa.1982.01268.
Fuchs
, D.
, and Tabachnikov
, S.
, 1999
, “More on Paper Folding
,” Am. Math. Mon.
, 106
(1
), pp. 27
–35
.10.2307/25895839.
Kergosien
, Y. L.
, Gotoda
, H.
, and Kunii
, T. L.
, 1994
, “Bending and Creasing Virtual Paper
,” IEEE Comput. Appl.
, 14
(1
), pp. 40
–48
.10.1109/38.25091710.
Dias
, M. A.
, and Santangelo
, C. D.
, 2012
, “The Shape and Mechanics of Curved-Fold Origami Structures
,” Europhys. Lett.
, 100
(5
), p. 54005
.10.1209/0295-5075/100/5400511.
Tachi
, T.
, 2013
, “Composite Rigid-Foldable Curved Origami Structure
,” 1st International Conference on Transformable Architecture (Transformables 2013), Seville, Spain
, Sept. 18–20.12.
Yao
, Z.
, Bowick
, M.
, Ma
, X.
, and Sknepnek
, R.
, 2013
, “Planar Sheets Meet Negative-Curvature Liquid Interfaces
,” Europhys. Lett.
, 101
(4
), p. 44007
.10.1209/0295-5075/101/4400713.
Kilian
, M.
, Flöry
, S.
, Chen
, Z.
, Mitra
, N. J.
, Sheffer
, A.
, and Pottmann
, H.
, 2008
, “Curved Folding
,” ACM Trans. Graphics
, 27
(3
), p. 75
.10.1145/1360612.136067414.
Hawkes
, E.
, An
, B.
, Benbernou
, N. M.
, Tanaka
, H.
, Kim
, S.
, Demaine
, E. D.
, Rus
, D.
, and Wood
, R. J.
, 2010
, “Programmable Matter by Folding
,” Proc. Natl. Acad. Sci.
, 107
(28
), pp. 12441
–12445
.10.1073/pnas.091406910715.
Felton
, S. M.
, Tolley
, M. T.
, Shin
, B.
, Onal
, C. D.
, Demaine
, E. D.
, Rus
, D.
, and Wood
, R. J.
, 2013
, “Self-Folding With Shape Memory Composites
,” Soft Matter
, 9
(32
), pp. 7688
–7694
.10.1039/c3sm51003d16.
Miyashita
, S.
, Onal
, C. D.
, and Rus
, D.
, 2013
, “Self-Pop-Up Cylindrical Structure by Global Heating
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Tokyo, Japan, Nov. 3–7, pp. 4065
–4071
.10.1109/IROS.2013.669693817.
Yasu
, K.
, and Inami
, M.
, 2012
, “POPAPY: Instant Paper Craft Made Up in a Microwave Oven
,” 9th International Conference on Advances in Computer Entertainment
(ACE 2012
), Kathmandu, Nepal, Nov. 3–5, pp. 406
–420
.10.1007/978-3-642-34292-9_2918.
Tolley
, M. T.
, Felton
, S. M.
, Miyashita
, S.
, Aukes
, D.
, Rus
, D.
, and Wood
, R. J.
, 2014
, “Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,” IOP J. Smart Mater. Struct.
, 23
(9
), p. 094006
.10.1088/0964-1726/23/9/09400619.
Miyashita
, S.
, Meeker
, L.
, Göldi
, M.
, Kawahara
, Y.
, and Rus
, D.
, 2014
, “Self-Folding Printable Elastic Electric Devices: Resistor, Capacitor, and Inductor
,” IEEE International Conference on Robotics and Automation
(ICRA
), Hong Kong, May 31–June 7, pp. 1446
–1453
.10.1109/ICRA.2014.690704220.
Guberan
, C.
, 2012
, “Hydro-Fold,” ECAL/University of Art and Design Lausanne, Renens, Switzerland, http://vimeo.com/3991490221.
Mitani
, J.
, 2009
, Fushigina Kyutai Rittai Origami
, Futami Shobo
, Tokyo
.22.
Leishman
, J. G.
, ed., 2006
, Principles of Helicopter Aerodynamics
, 2nd ed., Cambridge University Press
, Cambridge, UK.23.
Keys
, C.
, Tarzanin
, F.
, and McHugh
, F.
, 1987
, “Effect of Twist on Helicopter Performance and Vibratory Loads
,” 13th European Rotorcraft Forum
, Arles, France, Sept. 8–11.24.
Miyashita
, S.
, Meeker
, L.
, Göldi
, M.
, Tolley
, M. T.
, Wood
, R. J.
, and Rus
, D.
, 2014
, “Self-Folding Miniature Elastic Electric Device
,” IOP J. Smart Mater. Struct.
, 23
(9
), p. 094005
.10.1088/0964-1726/23/9/094005Copyright © 2015 by ASME
You do not currently have access to this content.