Print-and-fold manufacturing has the potential to democratize access to robots with robots that are easier to fabricate using materials that are easier to procure. Unfortunately, a lack of understanding about how motion can be achieved by folding hinders the scope of print-and-fold robots. In this paper, we show how the basic joints used in robots can be constructed using print-and-fold. Our patterns are parameterized so that users not only get the desired degrees of freedom but can also specify the joint's range of motion. The joints can be combined with each other to achieve higher degrees of freedom or with rigid bodies to produce foldable linkages. We have folded our basic joints and measured their force–displacement curves. We have composed them into joints with higher degrees of freedom and into foldable mechanisms and found that they achieve the expected kinematics. We have also added actuators and control circuitry to our joints and mechanisms, showing that it is possible to print and fold entire robots with many different kinematics using a uniform process.

References

References
1.
Hoover
,
A. M.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
RoACH: An Autonomous 2.4 g Crawling Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
26
33
.10.1109/IROS.2008.4651149
2.
Onal
,
C.
,
Wood
,
R.
, and
Rus
,
D.
,
2013
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
430
438
.10.1109/TMECH.2012.2210239
3.
Soltero
,
D. E.
,
Julian
,
B. J.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2013
, “
A Lightweight Modular 12-DOF Print-and-Fold Hexapod
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
1465
1471
.10.1109/IROS.2013.6696542
4.
Mehta
,
A.
, and
Rus
,
D.
,
2014
, “
An End-to-End System for Designing Mechanical Structures for Print-and-Fold Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
1460
1465
.10.1109/ICRA.2014.6907044
5.
Niiyama
,
R.
,
Rus
,
D.
, and
Kim
,
S.
,
2014
, “
Pouch Motors: Printable/Inflatable Soft Actuators for Robotics
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
6332
6337
.10.1109/ICRA.2014.6907793
6.
Mehta
,
A. M.
,
DelPreto
,
J.
,
Shaya
,
B.
, and
Rus
,
D.
,
2014
, “
Cogeneration of Mechanical, Electrical, and Software Designs for Printable Robots From Structural Specifications
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, IL, Sept. 14–18, pp.
2892
2897
.10.1109/IROS.2014.6942960
7.
Demaine
,
E.
, and
O'Rourke
,
J.
,
2008
,
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
New York
.
8.
Lee
,
D.
,
Kim
,
J.
,
Kim
,
S.
,
Koh
,
J.
, and
Cho
,
K.
,
2013
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,”
ASME
Paper No. DETC2013–13016. 10.1115/DETC2013-13016
9.
Gao
,
W.
,
Ramani
,
K.
,
Cipra
,
R. J.
, and
Siegmund
,
T.
,
2013
, “
Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111009
.10.1115/1.4025506
10.
Whitney
,
J.
,
Sreetharan
,
P.
,
Ma
,
K.
, and
Wood
,
R.
,
2011
, “
Pop-Up Book MEMS
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115021
.10.1088/0960-1317/21/11/115021
11.
Abel
,
Z.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
,
Eisenstat
,
S.
,
Lubiw
,
A.
,
Schulz
,
A.
,
Souvaine
,
D. L.
,
Viglietta
,
G.
, and
Winslow
,
A.
,
2013
, “
Algorithms for Designing Pop-Up Cards
,”
30th International Symposium on Theoretical Aspects of Computer Science
(
STACS'13
), Kiel, Germany, Feb. 27–Mar. 2, pp.
269
280
.10.4230/LIPIcs.xxx.yyy.p
12.
Tachi
,
T.
, and
Miura
,
K.
,
2012
, “
Rigid-Foldable Cylinders and Cells
,”
J. Int. Assoc. Shell Spat. Struct. (IASS)
,
53
(
4
), pp.
217
226
.
13.
Mitani
,
J.
, and
Suzuki
,
H.
,
2004
, “
Computer Aided Design for Origamic Architecture Models With Polygonal Representation
,”
Computer Graphics International
(
CGI '04
), Crete, Greece, June 19, pp.
93
99
.10.1109/CGI.2004.29
14.
Winder
,
B. G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.10.1115/1.3046128
15.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.10.1115/1.4025379
16.
Lee
,
H.
, and
Choi
,
Y.
,
2010
, “
Stackable 4-Bar Mechanisms and Their Robotic Applications
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipai, Taiwan, Oct. 18–22, pp.
2792
2797
.10.1109/IROS.2010.5651921
17.
Zhu
,
L.
,
Xu
,
W.
,
Snyder
,
J.
,
Liu
,
Y.
,
Wang
,
G.
, and
Guo
,
B.
,
2012
, “
Motion-Guided Mechanical Toy Modeling
,”
ACM Trans. Graphics
,
31
(
6
), p.
127
.10.1145/2366145.2366146
18.
Coros
,
S.
,
Thomaszewski
,
B.
,
Noris
,
G.
,
Sueda
,
S.
,
Forberg
,
M.
,
Sumner
,
R. W.
,
Matusik
,
W.
, and
Bickel
,
B.
,
2013
, “
Computational Design of Mechanical Characters
,”
ACM Trans. Graphics
,
32
(
4
), p.
83
.10.1145/2461912.2461953
19.
Thomaszewski
,
B.
,
Coros
,
S.
,
Gauge
,
D.
,
Megaro
,
V.
,
Grinspun
,
E.
, and
Gross
,
M.
,
2014
, “
Computational Design of Linkage-Based Characters
,”
ACM Trans. Graphics
,
33
(
4
), p.
64
.10.1145/2601097.2601143
20.
Mitra
,
N. J.
,
Yang
,
Y.-L.
,
Yan
,
D.-M.
,
Li
,
W.
, and
Agrawala
,
M.
,
2010
, “
Illustrating How Mechanical Assemblies Work
,”
ACM Trans. Graphics
,
29
(
4
), p.
58
.10.1145/1778765.1778795
21.
Sung
,
C.
, and
Rus
,
D.
,
2014
, “
Foldable Joints for Foldable Robots
,”
International Symposium on Experimental Robotics
(ISER 2014), Marrakech/Essaouira, Morocco, June 15–18.
22.
Howell
,
L.
,
Midha
,
A.
, and
Norton
,
T.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
.10.1115/1.2826843
23.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
24.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
.10.1115/1.4025381
25.
Dai
,
J. S.
, and
Cannella
,
F.
,
2008
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.10.1115/1.2813785
26.
Sung
,
C.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Rus
,
D.
,
2013
, “
Edge-Compositions of 3D Surfaces
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111001
.10.1115/1.4025378
You do not currently have access to this content.