A layer-based manufacturing method using composite microstructures is widely used for mesoscale robot fabrication. This fabrication method has enabled the development of a lightweight and robust jumping robot, but there are limitations in relation to the embedding of elastic components. In this paper, a fabrication method for embedding an elastic component at an angled position is developed, extending the capability of the composite microstructures. This method is then used to build an axial spring attached to the bistable mechanism of a jumping robot. Sheet metal is used as an elastic component, which is stamped after the layering and curing process, thereby changing the neutral position of the spring. Two linear springs are designed to be in parallel with a joint to impose bistability; thereby delivering two stable states. This bistable mechanism is triggered with a shape memory alloy (SMA) coil spring actuator. A small-scale jumping mechanism is then fabricated using this mechanism; it jumps when the snap-through of the bistable mechanism occurs. A model of the stamped sheet metal spring is built based on a pseudo rigid body model (PRBM) to estimate the spring performance, and a predictive sheet metal bending model is also built to design the die for stamping. The experimental results show that the stamped sheet metal spring stores 12.63 mJ of elastic energy, and that the mechanism can jump to a height of 175 mm with an initial takeoff velocity of 1.93 m/s.

References

References
1.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2006
, “
A Bioinspired Concept for High Efficiency Locomotion in Micro Robots: The Jumping Robot Grillo
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
4037
4042
.10.1109/ROBOT.2006.1642322
2.
Kovac
,
M.
,
Fuchs
,
M.
,
Guignard
,
A.
,
Zufferey
,
J.-C.
, and
Floreano
,
D.
,
2008
, “
A Miniature 7 g Jumping Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
373
378
.10.1109/ROBOT.2008.4543236
3.
Zhao
,
J.
,
Xu
,
J.
,
Gao
,
B.
,
Xi
,
N.
,
Cintrón
,
F. J.
,
Mutka
,
M. W.
, and
Xiao
,
L.
,
2013
, “
MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
602
614
.10.1109/TRO.2013.2249371
4.
Lambrecht
,
B. G. A.
,
Horchler
,
A. D.
, and
Quinn
,
R. D.
,
2005
, “
A Small, Insect-Inspired Robot That Runs and Jumps
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2005
), Apr. 18–22, pp.
1240
1245
.10.1109/ROBOT.2005.1570285
5.
Fiorini
,
P.
, and
Burdick
,
J.
,
2003
, “
The Development of Hopping Capabilities for Small Robots
,”
Auton. Rob.
,
14
(
2–3
), pp.
239
254
.10.1023/A:1022239904879
6.
Armour
,
R.
,
Paskins
,
K.
,
Bowyer
,
A.
,
Vincent
,
J.
, and
Megill
,
W.
,
2007
, “
Jumping Robots: A Biomimetic Solution to Locomotion Across Rough Terrain
,”
Bioinspiration Biomimetics
,
2
(
3
), pp.
S65
S82
.10.1088/1748-3182/2/3/S01
7.
Matsuyama
,
Y.
, and
Hirai
,
S.
,
2007
, “
Analysis of Circular Robot Jumping by Body Deformation
,”
IEEE International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
1968
1973
.10.1109/ROBOT.2007.363610
8.
Gerratt
,
A. P.
, and
Bergbreiter
,
S.
,
2013
, “
Incorporating Compliant Elastomers for Jumping Locomotion in Microrobots
,”
Smart Mater. Struct.
,
22
(
1
), p.
014010
.10.1088/0964-1726/22/1/014010
9.
Noh
,
M. K.
,
Kim
,
S. W.
,
An
,
S. M.
,
Koh
,
J.-S.
, and
Cho
,
K. J.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
1007
1018
.10.1109/TRO.2012.2198510
10.
Koh
,
J.-S.
,
Jung
,
S.-P.
,
Noh
,
M. K.
,
Kim
,
S. W.
, and
Cho
,
K. J.
,
2013
, “
Flea Inspired Catapult Mechanism With Active Energy Storage and Release for Small Scale Jumping Robot
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
26
31
.10.1109/ICRA.2013.6630552
11.
Koh
,
J.-S.
,
Jung
,
S.-P.
,
Wood
,
R. J.
, and
Cho
,
K. J.
,
2013
, “
A Jumping Robotic Insect Based on a Torque Reversal Catapult Mechanism
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Japan, Nov. 3–7, pp.
3796
3801
.10.1109/IROS.2013.6696899
12.
Whitney
,
J.
,
Sreetharan
,
P.
,
Ma
,
K.
, and
Wood
,
R. J.
,
2011
, “
Pop-Up Book MEMS
,”
J. Micromech. Microeng.
,
21
(
11
), p.
115021
.10.1088/0960-1317/21/11/115021
13.
Lee
,
D.-Y.
,
Koh
,
J.-S.
,
Kim
,
J.-S.
,
Kim
,
S.-W.
, and
Cho
,
K. J.
,
2013
, “Deformable-Wheel Robot Based on Soft Material,”
Int. J. Prec. Eng. Manuf.
,
14
(5), pp.
1439
1445
.10.1007/s12541-013-0194-8
14.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech, Des.
,
130
(
5
), p.
052304
.10.1115/1.2885509
15.
Hoover
,
A. M.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
RoACH: An Autonomous 2.4 g Crawling Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2008
), Nice, France, Sept. 22–26, pp.
26
33
.10.1109/IROS.2008.4651149
16.
Baisch
,
A. T.
, and
Wood
,
R. J.
,
2011
, “
Design and Fabrication of the Harvard Ambulatory Micro-Robot
,”
Robotics Research
,
C.
Pradalier
,
R.
Siegwart
,
G.
Hirzinger
, eds.,
Springer
,
Berlin, Germany
, pp.
715
730
.10.1007/978-3-642-19457-3_42
17.
Wood
,
R. J.
,
Nagpal
,
R.
, and
Wei
,
G.-Y.
,
2013
, “
Flight of the Robobees
,”
Sci. Am.
,
308
(
3
), pp.
60
65
.10.1038/scientificamerican0313-60
18.
Koh
,
J.-S.
, and
Cho
,
K. J.
,
2013
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
2
), pp.
419
429
.10.1109/TMECH.2012.2211033
19.
Jung
,
G.-P.
,
Koh
,
J.-S.
, and
Cho
,
K. J.
,
2013
, “
Underactuated Adaptive Gripper Using Flexural Buckling
,”
IEEE Trans. Rob.
,
29
(
6
), pp.
1396
1407
.10.1109/TRO.2013.2273842
20.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
21.
Boljanovic
,
V.
,
2004
,
Sheet Metal Forming Processes and Die Design
,
Industrial Press Inc.
,
Norwalk, CT
.
22.
Kazon
,
R.
,
Firat
,
M.
, and
Tiryaki
,
A. E.
,
2009
, “
Prediction of Spring Back in Wipe-Bending Process of Sheet Metal Using Neural Network
,”
Mater. Des.
,
30
(
2
), pp.
418
423
.10.1016/j.matdes.2008.05.033
23.
Kim
,
S.
,
Hawkes
,
E.
,
Cho
,
K.
,
Joldaz
,
M.
,
Foleyz
,
J.
, and
Wood
,
R.
,
2009
, “
Micro Artificial Muscle Fiber Using NiTi Spring for Soft Robotics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2009
), St. Louis, MO, Oct. 10–15, pp.
2228
2234
.10.1109/IROS.2009.5354178
You do not currently have access to this content.