Whole-body-contact sensing will be crucial in the quest to make robots capable of safe interaction with humans. This paper describes a novel design and a fabrication method of artificial tactile sensing skin for robots. The manufacturing method described in this paper allows easy filling of a complex microchannel network with a liquid conductor (e.g., room temperature ionic liquid (RTIL)). The proposed sensing skin can detect the magnitude and location of surface contacts using electrical impedance tomography (EIT), an imaging technique mostly used in the medical field and examined recently in conjunction with sensors based on a piezoresistive polymer sheet for robotic applications. Unlike piezoresistive polymers, our IL-filled artificial skin changes its impedance in a more predictable manner, since the measured value is determined by a simple function of the microchannel geometry only, rather than complex physical phenomena. As a proof of concept, we demonstrate that our EIT artificial skin can detect surface contacts and graphically show their magnitudes and locations.

References

References
1.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer-Verlag
, Berlin, Germany.
2.
Dargahi
,
J.
, and
Najarian
,
S.
,
2004
, “
Human Tactile Perception as a Standard for Artificial Tactile Sensing—A Review
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
1
(
1
), pp.
23
35
.10.1002/rcs.3
3.
Cheung
,
E.
, and
Lumelsky
,
V.
,
1989
, “
Development of Sensitive Skin for a 3D Robot Arm Operating in an Uncertain Environment
,”
IEEE International Conference on Robotics and Automation
, Scottsdale, AZ, May 14–19, pp.
1056
1061
.10.1109/ROBOT.1989.100121
4.
Lumelsky
,
V. J.
,
Shur
,
M. S.
, and
Wagner
,
S.
,
2001
, “
Sensitive Skin
,”
IEEE Sens. J.
,
1
(
1
), pp.
41
51
.10.1109/JSEN.2001.923586
5.
Cannata
,
G.
,
Maggiali
,
M.
,
Metta
,
G.
, and
Sandini
,
G.
,
2008
, “
An Embedded Artificial Skin for Humanoid Robots
,” IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (
MFI 2008
), Seoul, South Korea, Aug. 20–22, pp.
434
438
.10.1109/MFI.2008.4648033
6.
Ulmen
,
J.
, and
Cutkosky
,
M.
,
2010
, “
A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Anchorage, AK, May 3–7, pp.
4836
4841
.10.1109/ROBOT.2010.5509295
7.
Duchaine
,
V.
,
Lauzier
,
N.
,
Baril
,
M.
,
Lacasse
,
M.-A.
, and
Gosselin
,
C.
,
2009
, “
A Flexible Robot Skin for Safe Physical Human Robot Interaction
,” IEEE International Conference on Robotics and Automation (
ICRA’09
), Kobe, Japan, May 12–17, pp.
3676
3681
.10.1109/ROBOT.2009.5152595
8.
Lacasse
,
M.-A.
,
Duchaine
,
V.
, and
Gosselin
,
C.
,
2010
, “
Characterization of the Electrical Resistance of Carbon-Black-Filled Silicone: Application to a Flexible and Stretchable Robot Skin
,” IEEE International Conference on Robotics and Automation (
ICRA
), Anchorage, AK, May 3–7, pp.
4842
4848
.10.1109/ROBOT.2010.5509283
9.
Shimojo
,
M.
,
Namiki
,
A.
,
Ishikawa
,
M.
,
Makino
,
R.
, and
Mabuchi
,
K.
,
2004
, “
A Tactile Sensor Sheet Using Pressure Conductive Rubber With Electrical-Wires Stitched Method
,”
IEEE Sens. J.
,
4
(
5
), pp.
589
596
.10.1109/JSEN.2004.833152
10.
Cutkosky
,
M. R.
, and
Ulmen
,
J.
,
2014
, “
Dynamic Tactile Sensing
,”
The Human Hand as an Inspiration for Robot Hand Development
, Springer International Publishing, Cham, Switzerland, pp.
389
403
.10.1007/978-3-319-03017-3_18
11.
Geselowitz
,
D. B.
,
1971
, “
An Application of Electrocardiographic Lead Theory to Impedance Plethysmography
,”
IEEE Trans. Biomed. Eng.
,
18
(
1
), pp.
38
41
.10.1109/TBME.1971.4502787
12.
Nagakubo
,
A.
,
Alirezaei
,
H.
, and
Kuniyoshi
,
Y.
,
2007
, “
A Deformable and Deformation Sensitive Tactile Distribution Sensor
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO 2007
), Sanya, China, Dec. 15–18, pp.
1301
1308
.10.1109/ROBIO.2007.4522352
13.
Kato
,
Y.
,
Mukai
,
T.
,
Hayakawa
,
T.
, and
Shibata
,
T.
,
2007
, “
Tactile Sensor Without Wire and Sensing Element in the Tactile Region Based on EIT Method
,”
Sixth IEEE Sensors Conference
, Atlanta, GA, Oct. 28–31, pp.
792
795
.10.1109/ICSENS.2007.4388519
14.
Elsanadedy
,
A.
,
2012
, “
Application of Electrical Impedance Tomography to Robotic Tactile Sensing
,” Ph.D. thesis, Carleton University, Ottawa, Canada.
15.
Tawil
,
D. S.
,
Rye
,
D.
, and
Velonaki
,
M.
,
2009
, “
Improved EIT Drive Patterns for a Robotics Sensitive Skin
,”
Proceeding of Australasian Conference on Robotics and Automation (ACRA)
, Sydney, Australia, Dec. 2–4.
16.
Someya
,
T.
,
Sekitani
,
T.
,
Iba
,
S.
,
Kato
,
Y.
,
Kawaguchi
,
H.
, and
Sakurai
,
T.
,
2004
, “
A Large-Area, Flexible Pressure Sensor Matrix With Organic Field-Effect Transistors for Artificial Skin Applications
,”
Proc. Natl. Acad. Sci. U.S.A.
,
101
(
27
), pp.
9966
9970
.10.1073/pnas.0401918101
17.
Kao
,
T.-J.
,
Isaacson
,
D.
,
Newell
,
J.
, and
Saulnier
,
G.
,
2006
, “
A 3D Reconstruction Algorithm for EIT Using a Handheld Probe for Breast Cancer Detection
,”
Physiol. Meas.
,
27
(
5
), p.
S1
.10.1088/0967-3334/27/5/S01
18.
Tawil
,
D. S.
,
Rye
,
D.
, and
Velonaki
,
M.
,
2011
, “
Improved Image Reconstruction for an EIT-Based Sensitive Skin With Multiple Internal Electrodes
,”
IEEE Trans. Rob.
,
27
(
3
), pp.
425
435
.10.1109/TRO.2011.2125310
19.
Kost
,
J.
,
Foux
,
A.
, and
Narkis
,
M.
,
1994
, “
Quantitative Model Relating Electrical Resistance, Strain, and Time for Carbon Black Loaded Silicone Rubber
,”
Polym. Eng. Sci.
,
34
(
21
), pp.
1628
1634
.10.1002/pen.760342108
20.
Ding
,
T.
,
Wang
,
L.
, and
Wang
,
P.
,
2007
, “
Changes in Electrical Resistance of Carbon-Black-Filled Silicone Rubber Composite During Compression
,”
J. Polym. Sci., B: Polym. Phys.
,
45
(
19
), pp.
2700
2706
.10.1002/polb.21272
21.
Park
,
Y.-L.
,
Majidi
,
C.
,
Kramer
,
R.
,
Bérard
,
P.
, and
Wood
,
R. J.
,
2010
, “
Hyperelastic Pressure Sensing With a Liquid-Embedded Elastomer
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125029
.10.1088/0960-1317/20/12/125029
22.
Park
,
Y.-L.
,
Chen
,
B.-R.
, and
Wood
,
R. J.
,
2012
, “
Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors
,”
IEEE Sens. J.
,
12
(
8
), pp.
2711
2718
.10.1109/JSEN.2012.2200790
23.
Park
,
Y.-L.
,
Chen
,
B.-R.
,
Pérez-Arancibia
,
N. O.
,
Young
,
D.
,
Stirling
,
L.
,
Wood
,
R. J.
,
Goldfield
,
E. C.
, and
Nagpal
,
R.
,
2014
, “
Design and Control of a Bio-Inspired Soft Wearable Robotic Device for Ankle–Foot Rehabilitation
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016007
.10.1088/1748-3182/9/1/016007
24.
Park
,
Y.-L.
,
Tepayotl-Ramirez
,
D.
,
Wood
,
R. J.
, and
Majidi
,
C.
,
2012
, “
Influence of Cross-Sectional Geometry on the Sensitivity and Hysteresis of Liquid-Phase Electronic Pressure Sensors
,”
Appl. Phys. Lett.
,
101
(
19
), p.
191904
.10.1063/1.4767217
25.
Vogt
,
D. M.
,
Park
,
Y.-L.
, and
Wood
,
R. J.
,
2013
, “
Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels
,”
IEEE Sens. J.
,
13
(
10
), pp.
4056
4064
.10.1109/JSEN.2013.2272320
26.
Majidi
,
C.
,
Kramer
,
R.
, and
Wood
,
R.
,
2011
, “
A Non-Differential Elastomer Curvature Sensor for Softer-Than-Skin Electronics
,”
Smart Mater. Struct.
,
20
(
10
), p.
105017
.10.1088/0964-1726/20/10/105017
27.
Wong
,
R. D. P.
,
Posner
,
J. D.
, and
Santos
,
V. J.
,
2012
, “
Flexible Microfluidic Normal Force Sensor Skin for Tactile Feedback
,”
Sens. Actuators, A
,
179
(4), pp.
62
69
.10.1016/j.sna.2012.03.023
28.
Tabatabai
,
A.
,
Fassler
,
A.
,
Usiak
,
C.
, and
Majidi
,
C.
,
2013
,. “
Liquid-Phase Gallium–Indium Alloy Electronics With Microcontact Printing
,”
Langmuir
,
29
(
20
), pp.
6194
6200
.10.1021/la401245d
29.
Chossat
,
J.-B.
,
Park
,
Y.-L.
,
Wood
,
R.
, and
Duchaine
,
V.
,
2013
, “
A Soft Strain Sensor Based on Ionic and Metal Liquids
,”
IEEE Sens. J.
,
13
(
9
), pp.
3405
3414
.10.1109/JSEN.2013.2263797
30.
Hu
,
N.
,
Karube
,
Y.
,
Yan
,
C.
,
Masuda
,
Z.
, and
Fukunaga
,
H.
,
2008
, “
Tunneling Effect in a Polymer/Carbon Nanotube Nanocomposite Strain Sensor
,”
Acta Mater.
,
56
(
13
), pp.
2929
2936
.10.1016/j.actamat.2008.02.030
31.
Visser
,
A. E.
,
Bridges
,
N. J.
, and
Rogers
,
R. D.
,
2009
,
Ionic Liquids: Science and Applications
,
Oxford University Press
,
Cambridge, UK
.
32.
Marsh
,
K.
,
Boxall
,
J.
, and
Lichtenthaler
,
R.
,
2004
, “
Room Temperature Ionic Liquids and Their Mixtures—A Review
,”
Fluid Phase Equilibria
,
219
(
1
), pp.
93
98
.10.1016/j.fluid.2004.02.003
33.
Zhu
,
Y.
,
Chao
,
C.
,
Cheng
,
C.-H.
, and
Leung
,
W.-F.
,
2009
, “
A Novel Ionic-Liquid Strain Sensor for Large-Strain Applications
,”
IEEE Electron Device Lett.
,
30
(
4
), pp.
337
339
.10.1109/LED.2009.2013884
34.
Noda
,
K.
,
Iwase
,
E.
,
Matsumoto
,
K.
, and
Shimoyama
,
I.
,
2010
, “
Stretchable Liquid Tactile Sensor for Robot-Joints
,” IEEE International Conference on Robotics and Automation (
ICRA
), Anchorage, AK, May 3–7, pp.
4212
4217
.10.1109/ROBOT.2010.5509301
35.
ChemSpider
,
2014
, “1-Ethyl-3-Methylimidazolium Ethyl Sulfate,” Royal Society of Chemistry, Cambridge, UK, accessed on Nov. 17, 2014, http://www.chemspider.com/Chemical-Structure.16144279.html?rid=a6400a19-0943-4419-a840-845b6fa29630
36.
Zuo
,
G.
,
Zhao
,
Z.
,
Yan
,
S.
, and
Zhang
,
X.
,
2010
, “
Thermodynamic Properties of a New Working Pair: 1-Ethyl-3-Methylimidazolium Ethylsulfate and Water
,”
Chem. Eng. J.
,
156
(
3
), pp.
613
617
.10.1016/j.cej.2009.06.020
37.
Ying
,
H.
,
Xiulan
,
F.
,
Min
,
W.
,
Panfeng
,
H.
, and
Yunjian
,
G.
,
2007
, “
Research on Nano-SiO2/Carbon Black Composite for Flexible Tactile Sensing
,” IEEE International Conference on Information Acquisition, (
ICIA’07
), Seogwipo-si, South Korea, July 8–11, pp.
260
264
.10.1109/ICIA.2007.4295738
38.
Dickey
,
M. D.
,
Chiechi
,
R. C.
,
Larsen
,
R. J.
,
Weiss
,
E. A.
,
Weitz
,
D. A.
, and
Whitesides
,
G. M.
,
2008
, “
Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
1097
1104
.10.1002/adfm.200701216
39.
Kramer
,
R. K.
,
Majidi
,
C.
, and
Wood
,
R. J.
,
2011
, “
Wearable Tactile Keypad With Stretchable Artificial Skin
,” IEEE International Conference on Robotics and Automation (
ICRA
), Shanghai, China, May 9–13, pp.
1103
1107
.10.1109/ICRA.2011.5980082
40.
Lee
,
J.
,
Moon
,
H.
,
Fowler
,
J.
,
Schoellhammer
,
T.
, and
Kim
,
C.-J.
,
2002
, “
Electrowetting and Electrowetting-on-Dielectric for Microscale Liquid Handling
,”
Sens. Actuators, A
,
95
(
2
), pp.
259
268
.10.1016/S0924-4247(01)00734-8
41.
Dubois
,
P.
,
Marchand
,
G.
,
Fouillet
,
Y.
,
Berthier
,
J.
,
Douki
,
T.
,
Hassine
,
F.
,
Gmouh
,
S.
, and
Vaultier
,
M.
,
2006
, “
Ionic Liquid Droplet as e-Microreactor
,”
Anal. Chem.
,
78
(
14
), pp.
4909
4917
.10.1021/ac060481q
42.
Fassler
,
A.
, and
Majidi
,
C.
,
2013
, “
3D Structures of Liquid-Phase Gain Alloy Embedded in PDMS With Freeze Casting
,”
Lab Chip
, 13, pp.
4442
4450
.10.1039/C3LC50833A
43.
Lambert
,
P.
,
2013
,
Surface Tension in Microsystems—Engineering Below the Capillary Length
,
Springer
,
Dordrecht, The Netherlands
.
44.
Yang
,
J.-Z.
,
Lu
,
X.-M.
,
Gui
,
J.-S.
, and
Xu
,
W.-G.
,
2004
, “
A New Theory for Ionic Liquids—The Interstice Model Part 1. The Density and Surface Tension of Ionic Liquid EMISE
,”
Green Chem.
,
6
(
11
), pp.
541
543
.10.1039/b412286k
45.
Alder
,
A.
, and
Lionheart
,
W. R. B.
,
2006
, “
Uses and Abuses of eidors: An Extensible Software Base for EIT
,”
Physiol. Meas.
,
27
(5), pp.
S25
S42
.10.1088/0967-3334/27/5/S03
47.
Vauhkonen
,
M.
,
Lionheart
,
W. R.
,
Heikkinen
,
L. M.
,
Vauhkonen
,
P. J.
, and
Kaipio
,
J. P.
,
2001
, “
A matlab Package for the eidors Project to Reconstruct Two-Dimensional EIT Images
,”
Physiol. Meas.
,
22
(
1
), pp.
107
112
.10.1088/0967-3334/22/1/314
48.
Kotre
,
C.
,
1994
, “
EIT Image Reconstruction Using Sensitivity Weighted Filtered Backprojection
,”
Physiol. Meas.
,
15
(
2A
), pp.
A125
A136
.10.1088/0967-3334/15/2A/017
49.
Lipomi
,
D. J.
,
Vosgueritchian
,
M.
,
Tee
,
B. C.
,
Hellstrom
,
S. L.
,
Lee
,
J. A.
,
Fox
,
C. H.
, and
Bao
,
Z.
,
2011
, “
Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes
,”
Nat. Nanotechnol.
6
(
12
), pp.
788
792
.10.1038/nnano.2011.184
You do not currently have access to this content.