This paper details the design and fabrication process of a fully integrated soft humanoid robotic hand with five finger that integrate an embedded shape memory alloy (SMA) actuator and a piezoelectric transducer (PZT) flexure sensor. Several challenges including precise control of the SMA actuator, improving power efficiency, and reducing actuation current and response time have been addressed. First, a Ni-Ti SMA strip is pretrained to a circular shape. Second, it is wrapped with a Ni-Cr resistance wire that is coated with thermally conductive and electrically isolating material. This design significantly reduces actuation current, improves circuit efficiency, and hence reduces response time and increases power efficiency. Third, an antagonistic SMA strip is used to improve the shape recovery rate. Fourth, the SMA actuator, the recovery SMA strip, and a flexure sensor are inserted into a 3D printed mold which is filled with silicon rubber materials. The flexure sensor feeds back the finger shape for precise control. Fifth, a demolding process yields a fully integrated multifunctional soft robotic finger. We also fabricated a hand assembled with five fingers and a palm. We measured its performance and specifications with experiments. We demonstrated its capability of grasping various kinds of regular or irregular objects. The soft robotic hand is very robust and has a large compliance, which makes it ideal for use in an unstructured environment. It is inherently safe to human operators as it can withstand large impacts and unintended contacts without causing any injury to human operators or damage to the environment.

References

References
1.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.10.1080/11762320802557865
2.
Cho
,
K.-J.
,
Koh
,
J.-S.
,
Kim
,
S.
,
Chu
,
W.-S.
,
Hong
,
Y.
, and
Ahn
,
S.-H.
,
2009
, “
Review of Manufacturing Processes for Soft Biomimetic Robots
,”
Int. J. Precis. Eng. Manuf.
,
10
(
3
), pp.
171
181
.10.1007/s12541-009-0064-6
3.
Martinez
,
R. V.
,
Glavan
,
A. C.
,
Keplinger
,
C.
,
Oyetibo
,
A. I.
, and
Whitesides
,
G. M.
,
2014
, “
Soft Actuators and Robots That Are Resistant to Mechanical Damage
,”
Adv. Funct. Mater.
,
24
(
20
), pp.
3003
3010
.10.1002/adfm.201303676
4.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.10.1002/adfm.201303288
5.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multigait Soft Robot
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
51
), pp.
20400
20403
.10.1073/pnas.1116564108
6.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.10.1016/j.tibtech.2013.03.002
7.
Shepherd
,
R. F.
,
Stokes
,
A. A.
,
Freake
,
J.
,
Barber
,
J.
,
Snyder
,
P. W.
,
Mazzeo
,
A. D.
,
Cademartiri
,
L.
,
Morin
,
S. A.
, and
Whitesides
,
G. M.
,
2013
, “
Using Explosions to Power a Soft Robot
,”
Angew. Chem.
,
125
(
10
), pp.
2964
2968
.10.1002/ange.201209540
8.
Park
,
Y.-L.
,
Chen
,
B.-R.
, and
Wood
,
R. J.
,
2012
, “
Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors
,”
IEEE Sens. J.
,
12
(
8
), pp.
2711
2718
.10.1109/JSEN.2012.2200790
9.
Renda
,
F.
,
Cianchetti
,
M.
,
Giorelli
,
M.
,
Arienti
,
A.
, and
Laschi
,
C.
,
2012
, “
A 3D Steady-State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by the Octopus Arm
,”
Bioinspiration Biomimetics
,
7
(
2
), p.
025006
.10.1088/1748-3182/7/2/025006
10.
Ozawa
,
R.
,
Hashirii
,
K.
, and
Kobayashi
,
H.
,
2009
, “
Design and Control of Underactuated Tendon-Driven Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA’09
), Kobe, Japan, May 12–17, pp.
1522
1527
10.1109/ROBOT.2009.5152222.
11.
Mavroidis
,
C.
,
2002
, “
Development of Advanced Actuators Using Shape Memory Alloys and Electrorheological Fluids
,”
J. Res. Nondestr. Eval.
,
14
(
1
), pp.
1
32
.10.1080/09349840209409701
12.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K.-J.
,
Wood
,
R. J.
,
Rus
,
D.
, and
Kim
,
S.
,
2013
, “
Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1485
1497
.10.1109/TMECH.2012.2204070
13.
Icardi
,
U.
,
2001
, “
Large Bending Actuator Made With SMA Contractile Wires: Theory, Numerical Simulation and Experiments
,”
Composites, Part B
,
32
(
3
), pp.
259
267
.10.1016/S1359-8368(00)00062-7
14.
Zhang
,
J.-J.
,
Yin
,
Y.-H.
, and
Zhu
,
J.-Y.
,
2013
, “
Electrical Resistivity-Based Study of Self-Sensing Properties for Shape Memory Alloy-Actuated Artificial Muscle
,”
Sensors
,
13
(
10
), pp.
12958
12974
.10.3390/s131012958
15.
Paik
,
J. K.
, and
Wood
,
R. J.
,
2012
, “
A Bidirectional Shape Memory Alloy Folding Actuator
,”
Smart Mater. Struct.
,
21
(
6
), p.
065013
.10.1088/0964-1726/21/6/065013
16.
Liu
,
S.-H.
,
Huang
,
T.-S.
, and
Yen
,
J.-Y.
,
2009
, “
Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation
,”
Sensors
,
10
(
1
), pp.
112
127
.10.3390/s100100112
17.
Wang
,
T.-M.
,
Shi
,
Z.-Y.
,
Liu
,
D.
,
Ma
,
C.
, and
Zhang
,
Z.-H.
,
2012
, “
An Accurately Controlled Antagonistic Shape Memory Alloy Actuator With Self-Sensing
,”
Sensors
,
12
(
6
), pp.
7682
7700
.10.3390/s120607682
18.
Bergamasco
,
M.
,
Salsedo
,
F.
, and
Dario
,
P.
,
1989
, “
Shape Memory Alloy Micromotors for Direct-Drive Actuation of Dexterous Artificial Hands
,”
Sens. Actuators
,
17
(
1
), pp.
115
119
.10.1016/0250-6874(89)80071-X
19.
Lee
,
J. H.
,
Okamoto
,
S.
, and
Matsubara
,
S.
,
2012
, “
Development of Multi-Fingered Prosthetic Hand Using Shape Memory Alloy Type Artificial Muscle
,”
Comput. Technol. Appl.
,
3
(
7
), pp.
477
484
.
20.
Hino
,
T.
, and
Maeno
,
T.
,
2004
, “
Development of a Miniature Robot Finger With a Variable Stiffness Mechanism Using Shape Memory Alloy
,”
International Symposium on Robotics and Automation
, Querétaro, México, Aug. 25–27.
21.
Yang
,
K.
, and
Gu
,
C.
,
2002
, “
A Novel Robot Hand With Embedded Shape Memory Alloy Actuators
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
7
), pp.
737
745
.10.1243/09544060260128788
22.
Dilibal
,
S.
,
Guner
,
E.
, and
Akturk
,
N.
,
2002
, “
Three-Finger SMA Robot Hand and Its Practical Analysis
,”
Robotica
,
20
(
2
), pp.
175
180
10.1017/S0263574701003757.
23.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2007
, “
The SDM Hand as a Prosthetic Terminal Device: A Feasibility Study
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR 2007
), Noordwijk, The Netherlands, June 13–15, pp.
978
983
10.1109/ICORR.2007.4428542.
24.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2005
, “
Design and Evaluation of a Robust Compliant Grasper Using Shape Deposition Manufacturing
,”
ASME
Paper No. IMECE2005-7979110.1115/IMECE2005-79791.
25.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2013
, “
Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041017
.10.1115/1.4025298
26.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2011
, “
Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5–8
), pp.
437
452
.10.1007/s00170-011-3301-y
27.
Dollar
,
A. M.
,
Wagner
,
C. R.
, and
Howe
,
R. D.
,
2006
, “
Embedded Sensors for Biomimetic Robotics Via Shape Deposition Manufacturing
,”
First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2006
)10.1109/BIOROB.2006.1639182, Pisa, Italy, Feb. 20–22, pp.
763
768
.
28.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2006
, “
A Robust Compliant Grasper Via Shape Deposition Manufacturing
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
154
161
.10.1109/TMECH.2006.871090
29.
Park
,
Y.-L.
,
Chau
,
K.
,
Black
,
R. J.
, and
Cutkosky
,
M. R.
,
2007
, “
Force Sensing Robot Fingers Using Embedded Fiber Bragg Grating Sensors and Shape Deposition Manufacturing
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Rome, Italy, Apr. 10–14, pp.
1510
1516
10.1109/ROBOT.2007.363538.
30.
Deimel
,
R.
, and
Brock
,
O.
,
2013
, “
A Compliant Hand Based on a Novel Pneumatic Actuator
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
2047
2053
10.1109/ICRA.2013.6630851.
31.
Price
,
A.
,
Jnifene
,
A.
, and
Naguib
,
H.
,
2007
, “
Design and Control of a Shape Memory Alloy Based Dexterous Robot Hand
,”
Smart Mater. Struct.
,
16
(
4
), pp.
1401
1414
.10.1088/0964-1726/16/4/055
32.
DeLaurentis
,
K.
,
Mavroidis
,
C.
, and
Pfeiffer
,
C.
,
2000
, “
Development of a Shape Memory Alloy Actuated Robotic Hand
,”
7th International Conference on New Actuators (ACTUATOR 2000)
, Bremen, Germany, June 19–21, pp.
281
285
.
33.
Farias
,
V.
,
Solis
,
L.
,
Meléndez
,
L.
,
Garcia
,
C.
, and
Velázquez
,
R.
,
2009
, “
A Four-Fingered Robot Hand With Shape Memory Alloys
,”
IEEE AFRICON
(
AFRICON’09
), Nairobi, Kenya, Sept. 23–2510.1109/AFRCON.2009.5308403.
You do not currently have access to this content.