While techniques exist for the rapid prototyping of mechanical and electrical components separately, this paper describes a method where commercial additive manufacturing (AM) techniques can be used to concurrently construct the mechanical structure and electronic circuits in a robotic or mechatronic system. The technique involves printing hollow channels within 3D printed parts that are then filled with a low melting point liquid metal alloy that solidifies to form electrical traces. This method is compatible with most conventional fused deposition modeling and stereolithography (SLA) machines and requires no modification to an existing printer, though the technique could easily be incorporated into multimaterial machines. Three primary considerations are explored using a commercial fused deposition manufacturing (FDM) process as a testbed: material and manufacturing process parameters, simplified injection fluid mechanics, and automatic part generation using standard printed circuit board (PCB) software tools. Example parts demonstrate the ability to embed circuits into a 3D printed structure and populate the surface with discrete electronic components.

References

References
1.
Merz
,
R.
,
Prinz
,
F. B.
,
Ramaswami
,
K.
,
Terk
,
M.
, and
Weiss
,
L.
,
1994
,
Shape Deposition Manufacturing
,
Engineering Design Research Center, Carnegie Mellon University
, Pittsburgh, PA.
2.
Laliberte
,
T.
,
Gosselin
,
C. M.
, and
Cote
,
G.
,
2001
, “
Practical Prototyping
,”
IEEE Rob. Autom. Mag.
,
8
(
3
), pp.
43
52
.10.1109/100.956813
3.
Quigley
,
M.
,
Asbeck
,
A.
, and
Ng
,
A.
,
2011
, “
A Low-Cost Compliant 7-DOF Robotic Manipulator
,”
IEEE International Conference on Robotics and Automation
, pp.
6051
6058
.
4.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D Printed Underactuated Hand
,”
IEEE International Conference on Robotics and Automation
, pp.
2737
2743
.
5.
Malone
,
E.
, and
Lipson
,
H.
,
2007
, “
Fab@Home: The Personal Desktop Fabricator Kit
,”
Rapid Prototyping J.
,
13
(
4
), pp.
245
255
.10.1108/13552540710776197
6.
Cham
,
J. G.
,
Bailey
,
S. A.
,
Clark
,
J. E.
,
Full
,
R. J.
, and
Cutkosky
,
M. R.
,
2002
, “
Fast and Robust: Hexapedal Robots Via Shape Deposition Manufacturing
,”
Int. J. Rob. Res.
,
21
(
10–11
), pp.
869
882
.10.1177/0278364902021010837
7.
Dollar
,
A. M.
,
Wagner
,
C. R.
, and
Howe
,
R. D.
,
2006
, “
Embedded Sensors for Biomimetic Robotics Via Shape Deposition Manufacturing
,”
The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob 2006
), Pisa, Italy, Feb. 20–22, pp.
763
768
.10.1109/BIOROB.2006.1639182
8.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.10.1177/0278364913514466
9.
Tenzer
,
Y.
,
Jentoft
,
L. P.
, and
Howe
,
R. D.
,
2014
, “
Inexpensive and Easily Customized Tactile Array Sensors Using MEMS Barometers Chips
,”
IEEE Robot. Autom. Mag.
(in press).
10.
Czyżewski
,
J.
,
Burzyński
,
P.
,
Gaweł
,
K.
, and
Meisner
,
J.
,
2009
, “
Rapid Prototyping of Electrically Conductive Components Using 3D Printing Technology
,”
J. Mater. Process. Technol.
,
209
(
12–13
), pp.
5281
5285
.10.1016/j.jmatprotec.2009.03.015
11.
Leigh
,
S. J.
,
Bradley
,
R. J.
,
Purssell
,
C. P.
,
Billson
,
D. R.
, and
Hutchins
,
D. A.
,
2012
, “
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
,”
PLoS One
,
7
(
11
), p.
e49365
.10.1371/journal.pone.0049365
12.
Periard
,
D.
,
Malone
,
E.
, and
Lipson
,
H.
,
2007
, “
Printing Embedded Circuits
,”
18th Solid Freeform Fabrication Symposium
,
Austin TX
, Aug. 6–8, pp.
503
512
.
13.
Bare Conductive
,
2013
, “
Bare Paint Technical Data Sheet
,” Bare Conductive, London, UK, accessed Feb. 7, 2014, http://www.bareconductive.com/wp-content/uploads/2013/11/2013.TechnicalDataSheet_ElectricPaint.pdf
14.
Kawahara
,
Y.
,
Hodges
,
S.
,
Cook
,
B. S.
,
Zhang
,
C.
, and
Abowd
,
G. D.
,
2013
, “
Instant Inkjet Circuits: Lab-Based Inkjet Printing to Support Rapid Prototyping of UbiComp Devices
,”
ACM International Joint Conference on Pervasive and Ubiquitous Computing
(
UbiComp '13
), Zurich, Switzerland, Sept. 8–12, pp.
363
372
.10.1145/2493432.2493486
15.
van Osch
,
T. H. J.
,
Perelaer
,
J.
,
de Laat
,
A. W. M.
, and
Schubert
,
U. S.
,
2008
, “
Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates
,”
Adv. Mater.
,
20
(
2
), pp.
343
345
.10.1002/adma.200701876
16.
Ladd
,
C.
,
So
,
J.-H.
,
Muth
,
J.
, and
Dickey
,
M. D.
,
2013
, “
3D Printing of Free Standing Liquid Metal Microstructures
,”
Adv. Mater.
,
25
(
36
), pp.
5081
5085
.10.1002/adma.201301400
17.
Fassler
,
A.
, and
Majidi
,
C.
,
2013
, “
3D Structures of Liquid-Phase GaIn Alloy Embedded in PDMS With Freeze Casting
,”
Lab Chip
,
13
(
22
), pp.
4442
4450
.10.1039/c3lc50833a
18.
Siegel
,
A. C.
,
Bruzewicz
,
D. A.
,
Weibel
,
D. B.
, and
Whitesides
,
G. M.
,
2007
, “
Microsolidics: Fabrication of Three-Dimensional Metallic Microstructures in Poly(dimethylsiloxane)
,”
Adv. Mater.
,
19
(
5
), pp.
727
733
.10.1002/adma.200601787
19.
Dickey
,
M. D.
,
Chiechi
,
R. C.
,
Larsen
,
R. J.
,
Weiss
,
E. A.
,
Weitz
,
D. A.
, and
Whitesides
,
G. M.
,
2008
, “
Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
1097
1104
.10.1002/adfm.200701216
20.
Jillek
,
W.
, and
Yung
,
W. K. C.
,
2004
, “
Embedded Components in Printed Circuit Boards: A Processing Technology Review
,”
Int. J. Adv. Manuf. Technol.
,
25
(
3–4
), pp.
350
360
.10.1007/s00170-003-1872-y
21.
Espalin
,
D.
,
Muse
,
D. W.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing Multifunctionality: Structures With Electronics
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
963
978
.10.1007/s00170-014-5717-7
22.
MacDonald
,
E.
,
Salas
,
R.
,
Espalin
,
D.
,
Perez
,
M.
,
Aguilera
,
E.
,
Muse
,
D.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing for the Rapid Prototyping of Structural Electronics
,”
IEEE Access
,
2
, pp.
234
242
.10.1109/ACCESS.2014.2311810
23.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
.10.1108/13552541211212113
24.
DeNava
,
E.
,
Navarrete
,
M.
,
Lopes
,
A.
,
Alawneh
,
M.
,
Contreras
,
M.
,
Muse
,
D.
,
Castillo
,
S.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2008
, “
Three-Dimensional Off-Axis Component Placement and Routing for Electronics Integration Using Solid Freeform Fabrication
,”
Solid Freeform Fabrication Symposium
,
The University of Texas at Austin
,
Austin TX
, Aug. 4–6, pp.
362
369
.
25.
Stratasys
,
2013
, “ABSplus™-P430,” technical data sheet, Stratasys, Ltd., Eden Prairie, MN, accessed Feb. 7, 2014, http://www.stratasys.com/∼/media/Main/Secure/MaterialSpecsMS/Fortus-Material-Specs/Fortus-MS-ABSplus-01-13-web.ashx
26.
Bolton Metal Products
,
2013
, “
Bolton Metals Specifications
,” Bolton Metal Products Co., Bellefonte, PA, accessed Feb. 7, 2014, http://www.boltonmetalproducts.com/Specifications.html
27.
NFPA, 2008, “National Electrical Code
2008
,” National Fire Protection Association, Quincy, MA.
28.
Xu
,
Q.
,
Oudalov
,
N.
,
Guo
,
Q.
,
Jaeger
,
H. M.
, and
Brown
,
E.
,
2012
, “
Effect of Oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium
,”
Phys. Fluids
,
24
(
6
), p.
063101
.10.1063/1.4724313
29.
Doudrick
,
K.
,
Liu
,
S.
,
Mutunga
,
E. M.
,
Klein
,
K. L.
,
Damle
,
V.
,
Varanasi
,
K. K.
, and
Rykaczewski
,
K.
,
2014
, “
Different Shades of Oxide: From Nanoscale Wetting Mechanisms to Contact Printing of Gallium-Based Liquid Metals
,”
Langmuir
,
30
(
23
), pp.
6867
6877
.10.1021/la5012023
30.
Khan
,
M. R.
,
Eaker
,
C. B.
,
Bowden
,
E. F.
, and
Dickey
,
M. D.
,
2014
, “
Giant and Switchable Surface Activity of Liquid Metal Via Surface Oxidation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
39
), pp.
14047
14051
.10.1073/pnas.1412227111
You do not currently have access to this content.