To build multimaterial objects using additive manufacturing (AM), modifications to the majority of current conventional AM processes are required. Typically, deposition can only occur on flat surfaces and motion requires three degrees of freedom (DOFs) in a Cartesian coordinate system. In this work, metal wire and mesh were successfully embedded using ultrasonic energy on curved thermoplastic structures fabricated via the material extrusion AM technology named fused deposition modeling (FDM). The direct wire embedding process was executed by installing an ultrasonic horn on a three-axis prismatic machine and fixing an FDM-built curved part on a rotary stage. Since the part was nonplanar, a need existed to accurately place metal wire along the curved surface with positions defined by Cartesian and angular coordinates. Two additional DOFs were generated by moving both the build platform and tool head, and trajectory planning allowed for synchronized motion between the two motion systems.

References

References
1.
ASTM, 2012, “Standard Terminology for Additive Manufacturing Technologies,” ASTM International, West Conshohocken, PA, Standard No. F2792-12a.
2.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann. Manuf. Technol.
,
47
(
2
), pp.
525
540
.10.1016/S0007-8506(07)63240-5
3.
Stratasys,
2013
, “
Breathing Easier on the Track
,” Stratasys Inc., Eden Prairie, MN, http://www.stratasys.com/∼/media/Case%20Studies/Automotive/SSYS-CS-Fortus-JGR-SR-08-13.pdf
4.
Stratasys
,
2013
, “
A Turn for the Better
,” Stratasys Inc., Eden Prairie, MN, http://www.stratasys.com/∼/media/Case%20Studies/Aerospace/SSYS-CS-Fortus-KellyManufacturing-08-13.pdf
5.
Bailey
,
S. A.
,
Cham
,
J. G.
,
Cutkosky
,
M. R.
, and
Full
,
R. J.
,
1999
, “
Biomimetic Robotic Mechanisms Via Shape Deposition Manufacturing
,” Robotics Research: The Ninth International Symposium,
Springer-Verlag
,
London
, pp. 403–410.
6.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
.10.1108/13552541211212113
7.
Wicker
,
R. B.
, and
MacDonald
,
E.
,
2012
, “
Multi-Material, Multi-Technology Stereolithography
,”
Virtual Phys. Prototyping.
7
(
3
), pp.
181
194
.10.1080/17452759.2012.721119
8.
MacDonald
,
E.
,
Salas
,
R.
,
Espalin
,
D.
,
Perez
,
M.
,
Aguilera
,
E.
,
Muse
,
D.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing for the Rapid Prototyping of Structural Electronics
,”
IEEE Access
,
2
, pp.
234
242
.10.1109/ACCESS.2014.2311810
9.
Espalin
,
D.
,
2012
, “
Development of a Multi-Material, Multi-Technology FDM System for Process Improvement Experimentation
,” M.E. thesis, University of Texas at El Paso, El Paso, TX.
10.
Espalin
,
D.
,
Ramirez
,
J. A.
,
Medina
,
F.
, and
Wicker
,
R.
,
2014
, “
Multi-Material, Multi-Technology FDM: Exploring Build Process Variations
,”
Rapid Prototyping J.
,
20
(
3
), pp.
236
244
.10.1108/RPJ-12-2012-0112
11.
Espalin
,
D.
,
Muse
,
D. W.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing Multifunctionality: Structures With Electronics
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
963
978
.10.1007/s00170-014-5717-7
12.
Shemelya
,
C.
,
Muse
,
D.
,
MacDonald
,
E.
,
Espalin
,
D.
,
Wicker
,
R. B.
,
Cedillos
,
F.
, and
Aguilera
,
E.
,
2014
, “
Encapsulated Copper Wire and Copper Mesh Capacitive Sensing for 3D Printing Applications
,”
IEEE Sens. J.
,
15
(
2
), pp.
1280
1286
.10.1109/JSEN.2014.2356973
13.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai.
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microbot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.10.1115/1.2885509
14.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2013
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
24th Annual International Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp.
297
310
.
15.
Pan
,
Y.
,
Zhou
,
C.
,
Chen
,
Y.
, and
Partanen
,
J.
,
2014
, “
Multitool and Multi-Axis Computer Numerically Controlled Accumulation for Fabricating Conformal Features on Curved Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p. 031007.10.1115/1.4026898
16.
Lee
,
W.
,
Wei
,
C.
, and
Chung
,
S.
,
2014
, “
Development of a Hybrid Rapid Prototyping System Using Low-Cost Fused Deposition Modeling and Five-Axis Machining
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2366
2374
.10.1016/j.jmatprotec.2014.05.004
17.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2004
,
Robot Dynamics and Control
, 2nd ed.,
Wiley
, Hoboken, NJ.
18.
Sicilianno
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.10.1007/BF00126069
19.
Hearn
,
G. L.
,
2002
, “
Electrostatic Ignition Hazards Arising From Fuel Flow in Plastic Pipelines
,”
J. Loss Prev. Process Ind.
,
15
(
2
), pp.
105
109
.10.1016/S0950-4230(01)00061-4
20.
Glor
,
M.
,
2003
, “
Ignition Hazard Due to Static Electricity in Particulate Processes
,”
Powder Technol.
,
135–136
, pp.
223
233
.10.1016/j.powtec.2003.08.017
You do not currently have access to this content.