This paper describes a novel fabrication technique called hybrid deposition manufacturing (HDM), which combines additive manufacturing (AM) processes such as fused deposition manufacturing (FDM) with material deposition and embedded components to produce multimaterial parts and systems for robotics, mechatronics, and articulated mechanism applications. AM techniques are used to print both permanent components and sacrificial molds for deposited resins and inserted parts. Design strategies and practical techniques for developing these structures and molds are described, taking into account considerations such as printer resolution, build direction, and printed material strength. The strengths of interfaces between printed and deposited materials commonly used in the authors' implementation of the process are measured to characterize the robustness of the resulting parts. The process is compared to previously documented layered manufacturing methodologies, and the authors present examples of systems produced with the process, including robot fingers, a multimaterial airless tire, and an articulated camera probe. This effort works toward simplifying fabrication and assembly complexity over comparable techniques, leveraging the benefits of AM, and expanding the range of design options for robotic mechanisms.

References

References
1.
De Laurentis
,
K. J.
, and
Constantinos
,
M.
,
2004
, “
Rapid Fabrication of a Non-Assembly Robotic Hand With Embedded Components
,”
Assem. Autom.
,
24
(
4
), pp.
394
405
.10.1108/01445150410562606
2.
Melchiorri
,
C.
,
Palli
,
G.
,
Berselli
,
G.
, and
Vassura
,
G.
,
2013
, “
On the Development of the UB-Hand IV: An Overview of Design Solutions and Enabling Technologies
,”
IEEE Rob. Autom. Mag.
,
20
(
3
), pp.
72
81
.10.1109/MRA.2012.2225471
3.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3D-Printed Underactuated Hand
,”
International Conference on Robotics and Automation
,
Karlsruhe, Germany
, May 6–10, pp.
2737
2743
.10.1109/ICRA.2013.6630954
4.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2009
, “
The SDM Hand: A Highly Adaptive Compliant Grasper for Unstructured Environments
,”
Experimental Robotics
,
Springer
Berlin Heidelberg
, pp.
3
11
.10.1007/978-3-642-00196-3_2
5.
Rosato
,
D. V.
,
Rosato
,
D. V.
, and
Rosato
,
M. G.
, eds.,
2000
,
Injection Molding Handbook
,
Springer
, Norwell, MA.10.1007/978-1-4615-4597-2
6.
Becker
,
W. E.
, ed.,
1979
,
Reaction Injection Molding
,
Van Nostrand Reinhold Company
,
New York
.
7.
Castro
,
J. M.
, and
Macosko
,
C. W.
,
1982
, “
Studies of Mold Filling and Curing in the Reaction Injection Molding Process
,”
AIChE J.
,
28
(
2
), pp.
250
260
.10.1002/aic.690280213
8.
Kalivoda
,
P.
,
1991
, “
Soluble Core Technology of Interest for Hollow Complicated Products
,”
Kunstst. Mag.
,
2
(
10
), pp.
42
45
.
9.
Stratesys Whitepaper
,
2011
,
Soluble Cores & Mandrels for Hollow Composite Parts
,
Stratesys Whitepaper
, Eden Prairie, MN.
10.
Burk
,
S.
,
2001
, “
Overmolding of Embedded Electronics
,” Connector Specifier, from http:/cs.pennet.com
11.
Merz
,
R.
,
Prinz
,
F. B.
,
Ramaswami
,
K.
,
Terk
,
M.
, and
Weiss
,
L.
,
1994
,
Shape Deposition Manufacturing
, Engineering Design Research Center,
Carnegie Mellon University
,
Pittsburgh, PA
.
12.
Weiss
,
L. E.
,
Merz
,
R.
,
Prinz
,
F. B.
,
Neplotnik
,
G.
,
Padmanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Deposition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(
4
), pp.
239
248
.10.1016/S0278-6125(97)89095-4
13.
Priyadarshi
,
A. K.
,
Gupta
,
S. K.
,
Gouker
,
R.
,
Krebs
,
F.
,
Shroeder
,
M.
, and
Warth
,
S.
,
2007
, “
Manufacturing Multi-Material Articulated Plastic Products Using In-Mold Assembly
,”
Int. J. Adv. Manuf. Technol.
,
32
(
3–4
), pp.
350
365
.10.1007/s00170-005-0343-z
14.
Bejgerowski
,
W.
,
Gerdes
,
J.
,
Gupta
,
S. K.
, and
Bruck
,
H.
,
2011
, “
Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5–8
), pp.
437
452
.10.1007/s00170-011-3301-y
15.
Binnard
,
M.
, and
Cutkosky
,
M. R.
,
1998
, “
Building Block Design for Layered Shape Manufacturing
,”
ASME Design for Manufacturing Conference
,
Atlanta, Georgia
, Sept. 13–16.
16.
Cutkosky
,
M.
, and
Kim
,
S.
,
2009
, “
Design and Fabrication of Multi-Material Structures for Bioinspired Robots
,”
Philos. Trans. R. Soc.
,
367
(
1894
), pp.
1799
1813
.10.1098/rsta.2009.0013
17.
Hatanaka
,
M.
, and
Cutkosky
,
M. R.
,
2003
, “
Process Planning for Embedding Flexible Materials in Multi-Material Prototypes
,”
ASME
Paper No. DETC2003/DFM-48166.10.1115/DETC2003/DFM-48166
18.
Kietzman
,
J. W.
, and
Prinz
,
F. B.
,
1998
, “
Material Strength in Polymer Shape Deposition Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
567
574
.
19.
Cooper
,
A. G.
,
Kang
,
S.
,
Kietzman
,
J. W.
,
Prinz
,
F. B.
,
Lombardi
,
J. L.
, and
Weiss
,
L. E.
,
1999
, “
Automated Fabrication of Complex Molded Parts Using Mold Shape Deposition Manufacturing
,”
Mater. Des.
,
20
(
2
), pp.
83
89
.10.1016/S0261-3069(99)00013-8
20.
Jones
,
R.
,
Haufe
,
P.
,
Sells
,
E.
,
Iravani
,
P.
,
Olliver
,
V.
,
Palmer
,
C.
, and
Bowyer
,
A.
,
2011
, “
RepRap—The Replicating Rapid Prototyper
,”
Robotica
,
29
(
1
), pp.
177
191
.10.1017/S026357471000069X
21.
Stratasys
,
2014
, “
uPrint SE Plus 3D Printer
,” http://www.stratasys.com/3d-printers/idea-series/uprint-se-plus
22.
Bak
,
D.
,
2003
, “
Rapid Prototyping or Rapid Production? 3D Printing Processes Move Industry Towards the Latter
,”
Assem. Autom.
,
23
(
4
), pp.
340
345
.10.1108/01445150310501190
23.
Macy
,
B.
,
2011
, “
Rapid/Affordable Composite Tooling Strategies Utilizing Fused Deposition Modeling
,”
SAMPE J.
,
47
(
4
), pp.
37
44
.
24.
Aguilera
,
E.
,
Ramos
,
J.
,
Espalin
,
D.
,
Cedillos
,
F.
,
Muse
,
D.
,
Wicker
,
R.
, and
MacDonald
,
E.
,
2013
, “
3D Printing of Electro Mechanical Systems
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp. 950–961.
25.
Laliberte
,
T.
,
Gosselin
,
C. M.
, and
Cote
,
G.
,
2001
, “
Practical Prototyping
,”
IEEE Rob. Autom. Mag.
,
8
(
3
), pp.
43
52
.10.1109/100.956813
26.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics
,
31
(
6
), p. 130.10.1145/2366145.2366149
27.
Caulfield
,
B.
,
McHugh
,
P. E.
, and
Lohfeld
,
S.
,
2007
, “
Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process
,”
J. Mater. Process. Technol.
,
182
(
1
), pp.
477
488
.10.1016/j.jmatprotec.2006.09.007
28.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.10.1108/13552540210441166
29.
Cunico
,
M. W. M.
,
2013
, “
Study and Optimisation of FDM Process Parameters for Support-Material-Free Deposition of Filaments and Increased Layer Adherence
,”
Virtual Phys. Prototyping
,
8
(
2
), pp.
127
134
.10.1080/17452759.2013.790599
30.
Tymrak
,
B. M.
,
Kreiger
,
M.
, and
Pearce
,
J. M.
,
2014
, “
Mechanical Properties of Components Fabricated With Open-Source 3-D Printers Under Realistic Environmental Conditions
,”
Mater. Des.
,
58
, pp.
242
246
.10.1016/j.matdes.2014.02.038
31.
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2014
, “
Strengthening of 3D Printed Robotic Parts via Fill Compositing
,”
International Conference on Intelligent Robots and Systems
,
Chicago, IL
, Sept. 14–18, pp.
2886
2891
.10.1109/IROS.2014.6942959
32.
Deckard
,
C.
,
1986
, “
Method and Apparatus for Producing Parts by Selective Sintering
,” U.S. Patent No. 4,863,538.
33.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
35.
Kim
,
G. D.
, and
Oh
,
Y. T.
,
2008
, “
A Benchmark Study on Rapid Prototyping Processes and Machines: Quantitative Comparisons of Mechanical Properties, Accuracy, Roughness, Speed, and Material Cost
,”
J. Eng. Manuf.
,
222
(
2
), pp.
201
215
.10.1243/09544054JEM724
36.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies
,
Springer
,
New York
.10.1007/978-1-4419-1120-9
37.
Bailey
,
S. A.
,
Cham
,
J. G.
,
Cutkosky
,
M. R.
, and
Full
,
R. J.
,
2001
, “
Comparing the Locomotion Dynamics of the Cockroach and a Shape Deposition Manufactured Biomimetic Hexapod
,”
Exp. Rob.
,
271
, pp.
239
248
.10.1007/3-540-45118-8_25
38.
PMC®-780 Urethane Rubber Product Information.
(n.d.), (Accessed July 30,
2014
), “
PMC®-780 Urethane Rubber Product Information
,” http://www.smooth-on.com/Urethane-Rubber-an/c6_1117_1148/index.html
39.
VytaFlex® Series Urethane Rubber Product Information.
(n.d.), (Accessed July 30,
2014
), “
VytaFlex® Series Urethane Rubber Product Information
,” http://www.smooth-on.com/Urethane-Rubber-an/c6_1117_1142/index.html
40.
5960 Dual Column Tabletop Universal Testing Systems.
(n.d.), (Accessed July 31,
2014
), “
Instron
,” http://www.instron.us/wa/product/5960-dual-column-testing-systems.aspx
41.
Gouker
,
R. M.
,
Gupta
,
S. K.
,
Bruck
,
H. A.
, and
Holzschuh
,
T.
,
2006
, “
Manufacturing of Multi-Material Compliant Mechanisms Using Multi-Material Molding
,”
Int. J. Adv. Manuf. Technol.
,
30
(
11–12
), pp.
1049
1075
.10.1007/s00170-005-0152-4
42.
Shapeways
,
2014
, “
Design Rules and Detail Resolution for SLS 3D Printing
,” http://www.shapeways.com/tutorials/design_rules_for_3d_printing
43.
Righthand Robotics
, (Accessed Nov. 1,
2014
), http://www.righthandrobotics.com
44.
About OpenHand.
(n.d.), (Accessed Aug. 1,
2014
), “
Yale OpenHand Project
,” http://www.eng.yale.edu/grablab/openhand
45.
Smooth-On Inc. (PA)
, (Accessed Aug. 1,
2014
), “
Rigid Pulyurethane Foams Technical Bulletin
,” http://www.smooth-on.com/tb/files/FOAM-IT_SERIES_TB.pdf
46.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.10.1177/0278364913514466
47.
Hopkins
,
J. K.
,
Spranklin
,
B. W.
, and
Gupta
,
S. K.
,
2009
, “
A Survey of Snake-Inspired Robot Designs
,”
Bioinspiration Biomimetics
,
4
(
2
), p.
021002
.10.1088/1748-3182/4/2/021002
48.
Ananthanarayanan
,
A.
,
Bussemer
,
F.
,
Gupta
,
S. K.
, and
Desai
,
J. P.
,
2014
, “
Fabrication of Highly Articulated Miniature Snake Robot Structures Using In-Mold Assembly of Compliant Joints
,”
Exp. Rob.
,
79
, pp.
799
809
.10.1007/978-3-642-28572-1
You do not currently have access to this content.