Of special interest in the growing field of origami engineering is self-folding, wherein a material is able to fold itself in response to an applied field. In order to simulate the effect of active materials on an origami-inspired design, a dynamic model is needed. Ideally, the model would be an aid in determining how much active material is needed and where it should be placed to actuate the model to the desired position(s). A dynamic model of the origami waterbomb base, a well-known and foundational origami mechanism, is developed using adams 2014, a commercial multibody dynamics software package. Creases are approximated as torsion springs with both stiffness and damping. The stiffness of an origami crease is calculated, and the dynamic model is verified using the waterbomb. An approximation of the torque produced by magneto-active elastomers (MAEs) is calculated and is used to simulate MAE-actuated self-folding of the waterbomb. Experimental validation of the self-folding waterbomb model is performed, verifying that the dynamic model is capable of accurate simulation of the fold angles.

References

References
1.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
,
Thompson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.10.1115/1.4025372
2.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME
Paper No. SMASIS2013-3299. 10.1115/SMASIS2013-3299
3.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
A Novel Origami Crash Box With Varying Profiles
,”
ASME
Paper No. DETC2013-13495. 10.1115/DETC2013-13495
4.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Ling
,
J.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures; Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013-12405. 10.1115/DETC2013-12405
5.
Peraza-Hernandez
,
E.
,
Hartl
,
D.
, and
Malak
,
R.
,
2013
, “
Simulation-Based Design of a Self-Folding Smart Material System
,”
ASME
Paper No. IDETC2013-13439. 10.1115/IDETC2013-13439
6.
Ahmed
,
S.
,
Ounaies
,
Z.
, and
Frecker
,
M.
,
2014
, “
Investigating the Performance and Properties of Dielectric Elastomer Actuators as a Potential Means to Actuate Origami Structures
,”
Smart Mater. Struct.
,
23
(
9
), p.
094003
.10.1088/0964-1726/23/9/094003
7.
McGough
,
K.
,
Ahmed
,
S.
,
Frecker
,
M.
, and
Ounaies
,
Z.
,
2014
, “
Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami
,”
Smart Mater. Struct.
,
23
(
9
), p.
094002
.10.1088/0964-1726/23/9/094002
8.
Sheridan
,
R.
,
Roche
,
J.
,
Lofland
,
S.
, and
von Lockette
,
P.
,
2014
, “
Numerical Simulation and Experimental Validation of the Large Deformation Bending and Folding Behavior of Magneto-Active Elastomer Composites
,”
Smart Mater. Struct.
,
23
(
9
), p.
094004
.10.1088/0964-1726/23/9/094004
9.
Ryu
,
J.
,
D'Amato
,
M.
,
Cui
,
X.
,
Long
,
K.
,
Qi
,
H.
, and
Dunn
,
M.
,
2012
, “
Photo-Origami—Bending and Folding Polymers With Light
,”
Appl. Phys. Lett.
,
100
(16), p.
161908
.10.1063/1.3700719
10.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
Soft Matter
,
8
(
6
), pp.
1764
1769
.10.1039/c1sm06564e
11.
Belecastro
,
S.
, and
Hull
,
T.
,
2002
, “
Modeling the Folding of Paper into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(1–3), pp.
273
282
.10.1016/S0024-3795(01)00608-5
12.
Tachi
,
T
.,
2009
, “
Simulation of Rigid Origami
,”
Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education
, A K Peters, Natick, MA, pp.
175
188
.10.1201/b10653-20
13.
Liu
,
H.
, and
Dai
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng. Part C
,
216
(
10
), pp.
959
970
.10.1243/0954406021525331
14.
Qiu
,
C.
,
Aminzadeh
,
V.
, and
Dai
,
J. S.
,
2013
, “
Kinematic Analysis and Stiffness Validation of Origami Cartons
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111004
.10.1115/1.4025381
15.
Balkcom
,
D.
, and
Mason
,
M.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
.10.1177/0278364908090235
16.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.10.1115/1.4025379
17.
Bowen
,
L. A.
,
Baxter
,
W. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
A Position Analysis of Coupled Spherical Mechanisms in Action Origami
,”
Mach. Mech. Theory
,
77
, pp.
13
24
.10.1016/j.mechmachtheory.2014.02.006
18.
Dai
,
J.
, and
Cannella
,
F.
,
2007
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.10.1115/1.2813785
19.
Gattas
,
J.
, and
You
,
Z.
,
2014
, “
Quasi-Static Impact Response of Single-Curved Foldcore Sandwich Shells
,”
ASME
Paper No. DETC2013-12681. 10.1115/DETC2013-12681
20.
Crivaro
,
A.
,
Sheridan
,
R.
,
Frecker
,
M.
,
Simpson
,
T.
, and
von Lockette
,
P.
,
2014
, “
Bistable Snapthrough Compliant Mechanism Using Magneto Active Elastomer Actuation
,”
ASME
Paper No. DETC2014-35007. 10.1115/DETC2014-35007
21.
Hanna
,
B.
,
Lund
,
J.
,
Lang
,
R.
,
Magleby
,
S.
, and
Howell
,
L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.10.1088/0964-1726/23/9/094009
22.
Francis
,
K. C.
,
Blanch
,
J. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Origami-Like Creases in Sheet Materials for Compliant Mechanism Design
,”
Mech. Sci.
,
4
, pp.
371
380
.10.5194/ms-4-371-2013
23.
Abbott
,
A.
,
Bushkohl
,
P.
,
Joo
,
J.
,
Reich
,
G.
, and
Vaia
,
R.
,
2014
, “
Characterization of Creases in Polymers for Adaptive Origami Structures
,”
ASME
Paper No. SMASIS2014-7480. 10.1115/SMASIS2014-7480
24.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.10.1073/pnas.0914069107
25.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
26.
Saunders
,
R.
,
Hartl
,
D.
,
Malak
,
R.
, and
Lagoudas
,
D.
,
2014
, “
Design and Analysis of a Self-Folding SMA-SMP Composite Laminate
,”
ASME
Paper No. DETC2014-35151. 10.1115/DETC2014-35151
27.
Koh
,
J.
,
Kim
,
S.
, and
Cho
,
K.
,
2014
, “
Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators
,”
ASME
Paper No. DETC2014-34822. 10.1115/DETC2014-34822
28.
MSC,
2014
, adams, MSC Software Corp., Newport Beach, CA, accessed Jan. 27, 2014, http://www.mscsoftware.com/product/adams
29.
Xi
,
Z.
, and
Lien
,
J.
,
2014
, “
Folding Rigid Origami With Closure Constraints
,”
ASME
Paper No. DETC2014-35556. 10.1115/DETC2014-35556
30.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
, Hoboken, NJ.
31.
Sheridan
,
R.
, and
von Lockette
,
P.
,
2013
, “
Folding Actuation and Locomotion of Novel Magneto-Active Elastomer (MAE) Composites
,”
ASME
Paper No. SMASIS2013-3222. 10.1115/SMASIS2013-3222
32.
Bellan
,
C.
, and
Bossis
,
G.
,
2002
, “
Field Dependence of Viscoelastic Properties of MR Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17n18
), pp.
2447
2453
.10.1142/S0217979202012499
33.
Zhang
,
X.
,
Peng
,
S.
,
Wen
,
W.
, and
Li
,
W.
,
2008
, “
Analysis and Fabrication of Patterned Magnetorheological Elastomers
,”
Smart Mater. Struct.
,
17
(
4
), p.
045001
.10.1088/0964-1726/17/4/045001
34.
Ginder
,
J. M.
,
Clark
,
S. M.
,
Schlotter
,
W. F.
, and
Nichols
,
M. E.
,
2002
, “
Magnetostrictive Phenomena in Magnetorheological Elastomers
,”
Int. J. Mod. Phys. B
,
16
(
17n18
), pp.
2412
2418
.10.1142/S021797920201244X
35.
Ginder
,
J. M.
,
Nichols
,
M. E.
,
Elie
,
L. D.
, and
Clark
,
S. M.
,
2000
, “
Controllable-Stiffness Components Based on Magnetorheological Elastomers
,”
Proc. SPIE
,
3985
, pp.
418
425
.10.1117/12.388844
36.
Carpi
,
F.
,
De Rossi
,
D.
,
Kornbluh
,
R.
,
Pelrine
,
R. E.
, and
Sommer-Larsen
,
P.
,
2011
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models, and Applications of an Emerging Electroactive Polymer Technology
,
Elsevier
, Amsterdam, Netherlands.
37.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.10.1126/science.287.5454.836
38.
Kornbluh
,
R. D.
,
Pelrine
,
R.
,
Joseph
,
J.
,
Heydt
,
R.
,
Pei
,
Q.
, and
Chiba
,
S.
,
1999
, “
High-Field Electrostriction of Elastomeric Polymer Dielectrics for Actuation
,”
Proc. SPIE
,
3669
, pp.
149
161
.10.1117/12.349672
39.
Roland
,
C. M.
,
Garrett
,
J. T.
,
Casalini
,
R.
,
Roland
,
D. F.
,
Santangelo
,
P. G.
, and
Qadri
,
S. B.
,
2004
, “
Mechanical and Electromechanical Properties of Vinylidene Fluoride Terpolymers
,”
Chem. Mater.
,
16
(
5
), pp.
857
861
.10.1021/cm034822h
40.
Leary
,
M.
,
Schiavone
,
F.
, and
Subic
,
A.
,
2010
, “
Lagging for Control of Shape Memory Alloy Actuator Response Time
,”
Mater. Des.
,
31
(
4
), pp.
2124
2128
.10.1016/j.matdes.2009.10.010
41.
Voit
,
W.
,
Ware
,
T.
,
Dasari
,
R. R.
,
Smith
,
P.
,
Danz
,
L.
,
Simon
,
D.
,
Barlow
,
S.
,
Marder
,
S. R.
, and
Gall
,
K.
,
2010
, “
High-Strain Shape-Memory Polymers
,”
Adv. Funct. Mater.
,
20
(
1
), pp.
162
171
.10.1002/adfm.200901409
42.
Lendlein
,
A.
, and
Langer
,
R.
,
2002
, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
,
296
(
5573
), pp.
1673
1676
.10.1126/science.1066102
43.
Ratna
,
D.
, and
Karger-Kocsis
,
J.
,
2008
, “
Recent Advances in Shape Memory Polymers and Composites: A Review
,”
J. Mater. Sci.
,
43
(
1
), pp.
254
269
.10.1007/s10853-007-2176-7
44.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P. T.
,
2007
, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
,
17
(
16
), pp.
1543
1558
.10.1039/b615954k
45.
Liu
,
Y.
,
Mailen
,
R.
,
Zhu
,
Y.
,
Dickey
,
M. D.
, and
Genzer
,
J.
,
2014
, “
Simple Geometric Model to Describe Self-Folding of Polymer Sheets
,”
Phys. Rev. E
,
89
, p.
042601
.10.1103/PhysRevE.89.042601
46.
von Lockette
,
P.
,
Lofland
,
S. E.
,
Biggs
,
J.
,
Roche
,
J.
,
Mineroff
,
J.
, and
Babcock
,
M.
,
2011
, “
Investigating New Symmetry Classes in Magnetorheological Elastomers: Cantilever Bending Behavior
,”
Smart Mater. Struct.
,
20
(
10
), p.
105022
.10.1088/0964-1726/20/10/105022
47.
MatWeb, 2014, “Overview of Materials for Polypropylene
, Flame Retardant,” MatWeb LLC, Blacksburg, VA, available at: http://www.matweb.com/search/DataSheet.aspx?MatGUID=4c2bd986726e4d969fa34452d2da865c&ckck=1
48.
Tedesco
,
C.
,
2014
, “
Investigating the Effects of a Magneto-Active Elastomer Exposed to an External Magnetic Field at Fixed Displacements
,” BA thesis, Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA.
You do not currently have access to this content.