This paper seeks to advance the design of planar multiloop shape-changing mechanisms used in a variety of applications, such as morphing extrusion dies and airfoils. The presence of defects is a limiting factor in finding suitable single-degree-of-freedom (DOF) morphing mechanisms, particularly when the number of shapes to achieve is large and/or the changes among those shapes are significant. This paper presents methods of designing multi-DOF mechanisms to expand the design space in which to find suitable defect-free solutions. The primary method uses a building block approach with Assur group of class II chains, similar to the current 1-DOF synthesis procedure. It is compared to both the 1-DOF procedure and an alternative multi-DOF procedure that generates mechanisms with single-DOF subchains. In all cases, a genetic algorithm is employed to search the design space. Two example problems involving four prescribed shapes demonstrate that mechanisms exhibiting superior shape matching are achieved with the primary multi-DOF procedure, as compared to the other two procedures.

References

References
1.
Chase
,
T.
, and
Mirth
,
J.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.10.1115/1.2919181
2.
Myszka
,
D.
,
Murray
,
A.
, and
Schmiedeler
,
J.
,
2009
, “
Assessing Position Order in Rigid Body Guidance: An Intuitive Approach to Fixed Pivot Selection
,”
ASME J. Mech. Rob.
,
131
(
1
), p.
014502
.10.1115/1.3013851
3.
Mirth
,
J.
, and
Chase
,
T.
,
1995
, “
Circuit Rectification for Four Precision Position Synthesis of Stephenson Six-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
644
646
.10.1115/1.2826734
4.
Mirth
,
J.
, and
Chase
,
T.
,
1995
, “
Circuit Rectification for Four Precision Position Synthesis of Four Bar and Watt Six-Bar Linkages
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
612
619
.10.1115/1.2826729
5.
Balli
,
S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.10.1016/S0094-114X(02)00035-6
6.
Myszka
,
D.
,
Murray
,
A.
, and
Schmiedeler
,
J.
,
2009
, “
Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N, Order N-1
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011009
.10.1115/1.2960542
7.
Zhao
,
K.
,
Schmiedeler
,
J.
, and
Murray
,
A.
,
2012
, “
Design of Planar, Shape-Changing Rigid-Body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041007
.10.1115/1.4007449
8.
Giaier
,
K. S.
,
Myszka
,
D. H.
,
Kramer
,
W. P.
, and
Murray
,
A. P.
,
2014
, “
Variable Geometry Dies for Polymer Extrusion
,”
Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition
, Montreal, Canada, Nov. 14–20, ASME Paper No. IMECE2014-38409.
9.
Murray
,
A.
,
Schmiedeler
,
J.
, and
Korte
,
B.
,
2008
, “
Kinematic Synthesis of Planar, Shape Changing Rigid-Body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p.
032302
.10.1115/1.2829892
10.
Persinger
,
J.
,
Schmiedeler
,
J.
, and
Murray
,
A.
,
2009
, “
Synthesis of Planar Rigid-Body Mechanisms Approximating Shape Changes Defined by Closed Curves
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071006
.10.1115/1.3149843
11.
Alizade
,
R.
,
Rao
,
A.
, and
Sandoe
,
G.
,
1975
, “
Optimum Synthesis of Two-Degree-of-Freedom Planar and Spatial Function Generating Mechanisms Using the Penalty Function Approach
,”
ASME J. Manuf. Sci. Eng.
,
97
(
2
), pp.
629
634
.10.1115/1.3438627
12.
Rao
,
A.
,
1978
, “
Dynamic Synthesis of a 2-Degree-of-Freedom Function-Generator With Flexible Elements
,”
Mech. Mach. Theory
,
13
(
3
), pp.
329
332
.10.1016/0094-114X(78)90056-3
13.
Rao
,
A.
,
1979
, “
Dynamic Synthesis of 2-Degrees-of-Freedom Flexibly Coupled Slider-Link Mechanism for Harmonic Motion or Function-Generation
,”
Mech. Mach. Theory
,
14
(
4
), pp.
233
238
.10.1016/0094-114X(79)90010-7
14.
Lakshminarayana
,
K.
,
1974
, “
Contributions to the Synthesis of Two-Freedom Linkages—Part 2: Derivative Synthesis
,”
ASME Design Engineering Technical Conference
, New York, Oct. 5–9, ASME Paper No. 74-DET-35.
15.
Ramaiyan
,
G.
,
Lakshminarayana
,
K.
, and
Narayanamurth
,
R.
,
1976
, “
Nine-Link Plane Mechanisms for Two-Variable Function Generation—II. Synthesis
,”
Mech. Mach. Theory
,
11
(
3
), pp.
193
199
.10.1016/0094-114X(76)90046-X
16.
Philipp
,
R.
, and
Freudenstein
,
F.
,
1966
, “
Synthesis of Two-Degree-of-Freedom Linkages—A Feasibility Study of Numerical Methods of Synthesis of Bivariate Function Generators
,”
J. Mech.
,
1
(
1
), pp.
9
21
.10.1016/0022-2569(66)90004-8
17.
Macho
,
E.
,
Altuzarra
,
O.
,
Pinto
,
C.
, and
Herandez
,
A.
,
2008
, “
Transitions Between Multiple Solutions of the Direct Kinematic Problem
,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarcic
, and
P.
Wenger
, eds.,
Springer
, Dordecht,
Netherlands
, pp.
301
310
.10.1007/978-1-4020-8600-7_32
18.
Zein
,
M.
,
Wenger
,
P.
, and
Chablat
,
D.
,
2008
, “
Non-Singular-Mode Changing Motions for 3-RPR Parallel Manipulators
,”
Mech. Mach. Theory
,
43
(4), pp.
480
490
.10.1016/j.mechmachtheory.2007.03.011
19.
McAree
,
P.
, and
Daniel
,
R.
,
1999
, “
An Explanation of Never-Special Assembly Changing Motions for 3-3 Parallel Manipulators
,”
Int. J. Rob. Res.
,
18
(
6
), pp.
556
574
.10.1177/02783649922066394
20.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1998
, “
Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
73
79
.10.1115/1.2826679
21.
Shamsudin
,
S.
,
Murray
,
A.
,
Myszka
,
D.
, and
Schmiedeler
,
J.
,
2013
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid Body Mechanisms for Design Profiles With Significant Differences in Arclength
,”
Mech. Mach. Theory
,
70
, pp.
425
440
.10.1016/j.mechmachtheory.2013.08.007
22.
Angeles
,
J.
, and
Truesdell
,
C.
,
1989
,
Rational Kinematics
,
Springer
, New York.
You do not currently have access to this content.