In this paper, we present an algorithm that automatically creates the linkage loop equations for planar one degree of freedom, 1DOF, linkages of any topology with revolute joints, demonstrated up to 8 bar. The algorithm derives the linkage loop equations from the linkage adjacency graph by establishing a rooted cycle basis through a single common edge. Divergent and convergent loops are identified and used to establish the fixed angles of the ternary and higher links. Results demonstrate the automated generation of the linkage loop equations for the nine unique 6-bar linkages with ground-connected inputs that can be constructed from the five distinct 6-bar mechanisms, Watt I–II and Stephenson I–III. Results also automatically produced the loop equations for all 153 unique linkages with a ground-connected input that can be constructed from the 71 distinct 8-bar mechanisms. The resulting loop equations enable the automatic derivation of the Dixon determinant for linkage kinematic analysis of the position of every possible assembly configuration. The loop equations also enable the automatic derivation of the Jacobian for singularity evaluation and tracking of a particular assembly configuration over the desired range of input angles. The methodology provides the foundation for the automated configuration analysis of every topology and every assembly configuration of 1DOF linkages with revolute joints up to 8 bar. The methodology also provides a foundation for automated configuration analysis of 10-bar and higher linkages.

References

References
1.
Tsai
,
L.-W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press, Boca Raton
, FL.
2.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Structural Synthesis of Planar Kinematic Chains by Adapting a McKay-Type Algorithm
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1021
1030
.10.1016/j.mechmachtheory.2005.11.007
3.
McKay
,
B. D.
,
1998
, “
Isomorph-Free Exhaustive Generation
,”
J. Algorithms
,
26
(
2
), pp.
306
324
.10.1006/jagm.1997.0898
4.
Ding
,
H.
, and
Huang
,
Z.
,
2007
, “
The Establishment of the Canonical Perimeter Topological Graph of Kinematic Chains and Isomorphism Identification
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
915
923
.10.1115/1.2748451
5.
Ding
,
H.
,
Hou
,
F.
,
Kecskeméthy
,
A.
, and
Huang
,
Z.
,
2012
, “
Synthesis of the Whole Family of Planar 1-DOF Kinematic Chains and Creation of Their Atlas Database
,”
Mech. Mach. Theory
,
47
, pp.
1
15
.10.1016/j.mechmachtheory.2011.08.011
6.
Ding
,
H.
,
Yang
,
W.
,
Huang
,
P.
, and
Kecskeméthy
,
A.
,
2013
, “
Automatic Structural Synthesis of Planar Multiple Joint Kinematic Chains
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091007
.10.1115/1.4024733
7.
Tuttle
,
E. R.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.10.1016/0094-114X(95)00083-B
8.
Manolescu
,
N.
,
1973
, “
A Method Based on Baranov Trusses, and Using Graph Theory to Find the Set of Planar Jointed Kinematic Chain and Mechanisms
,”
Mech. Mach. Theory
,
8
(
1
), pp.
3
22
.10.1016/0094-114X(73)90003-7
9.
Verho
,
A
.,
1973
, “
An Extension of the Concept of the Group
,”
Mech. Mach. Theory
,
8
(
2
), pp.
249
256
.10.1016/0094-114X(73)90059-1
10.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2007
, “
Synthesis of Eight-Bar Linkages as Mechanically Constrained Parallel Robots
,” 12th World Congress in Mechanism and Machine Science (
IFToMM
), Besancon, France, June 18–21. http://www.dmg-lib.org/dmglib/handler?docum=20412009
11.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2005
, “
Clifford Algebra Exponentials and Planar Linkage Synthesis Equations
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
931
940
.10.1115/1.1904047
12.
Soh
,
G. S.
, and
McCarthy
,
J. M.
,
2008
, “
The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,”
Mech. Mach. Theory
,
43
(
2
), pp.
160
170
.10.1016/j.mechmachtheory.2007.02.004
13.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
Springer
, New York.
14.
Wampler
,
C. W.
,
2001
, “
Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex Plane Formulation
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
382
387
.10.1115/1.1372192
15.
Dixon
,
A.
,
1909
, “
The Eliminant of Three Quantics in Two Independent Variables
,”
Proceedings of the London Mathematical Society
, C. F. Hodgson & Son, London, UK, pp. 49–69.
16.
Nielsen
,
J.
, and
Roth
,
B.
,
1999
, “
Solving the Input/Output Problem for Planar Mechanisms
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
206
211
.10.1115/1.2829445
17.
Dhingra
,
A. K.
,
Almadi
,
A. N.
, and
Kohli
,
D.
,
2001
, “
A Gröbner–Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
431
438
.10.1115/1.1290395
18.
Porta
,
J. M.
,
Ros
,
L.
, and
Thomas
,
F.
,
2009
, “
A Linear Relaxation Technique for the Position Analysis of Multiloop Linkages
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
225
239
.10.1109/TRO.2008.2012337
19.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.10.1115/1.2919181
20.
Myszka
,
D. H.
,
Murray
,
A. P.
, and
Wampler
,
C. W.
,
2012
, “
Mechanism Branches, Turning Curves and Critical Points
,”
ASME
Paper No. DETC2012-70277. 10.1115/1.2919181
21.
Kecskeméthy
,
A.
,
Krupp
,
T.
, and
Hiller
,
M.
,
1997
, “
Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions
,”
Multibody Syst. Dyn.
,
1
(
1
), pp.
23
45
.10.1023/A:1009743909765
22.
Whitney
,
H.
,
1932
, “
Non-Separable and Planar Graphs
,”
Trans. Am. Math. Soc.
,
34
(2), pp.
339
362
.
23.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion With Graphs
,”
Numer. Math.
,
1
(
1
), pp.
269
271
.10.1007/BF01386390
24.
Silvester
,
J. R.
,
2000
, “
Determinants of Block Matrices
,”
Math. Gaz.
,
84
(
501
), pp.
460
467
. 10.2307/3620776
You do not currently have access to this content.