Camus' concept of auxiliary surface (AS) is extended to the case of involute gears with skew axes. In the case at hand, we show that the AS is an orthogonal helicoid whose axis (a) lies in the cylindroid and (b) is normal to the instant screw axis of one gear with respect to its meshing counterpart; in general, the helicoid axis is skew with respect to the latter. According to the spatial version of Camus' Theorem, any line or surface attached to the AS, in particular any line L of AS itself, can be chosen to generate a pair of conjugate flanks with line contact. While the pair of conjugate flanks is geometrically feasible, as they always share a line of contact and the tangent plane at each point of this line, they even have the same curvature, G2-continuity, when L coincides with the instant screw axis (ISA). This means that the two surfaces penetrate each other, at the same common line. The outcome is that the surfaces are not realizable as tooth flanks. Nevertheless, this is a fundamental step toward the synthesis of the flanks of involute gears with skew axes. In fact, the above-mentioned interpenetration between the tooth flanks can be avoided by choosing a smooth surface attached to the AS, instead of a line of the AS itself, which can give, in particular, the spatial version of octoidal bevel gears, when a planar surface is chosen.

References

References
1.
Fueter
,
R.
,
1923
, “
Martin Disteli
,”
Vierteljahreszeit Schr. Naturforsch. Ges. Zürich
,
68
, pp.
593
596
.
2.
Generallandesarchiv Karlsruhe Akte N. 448/2359.
3.
Mollet
,
H.
,
1961
, “
Dr. Martin Disteli, Hochschulprofessor 1862-1923
,”
Oltner Neujahrsblätter
,
Kommissions-Verlag
,
Olten, Switzerland
, pp.
39
42
.
4.
Schur
,
F.
,
1927
, “
Nachruf auf Martin Disteli
,”
Jahresber. DMV
,
36
, pp.
170
173
.
5.
Frei
,
G.
, and
Stammbach
,
U.
,
1994
,
Die Mathematiker an den Zürcher Hochschulen
,
Birkhäuser Verlag
,
Basel, Switzerland
, p.
78
.
6.
Disteli
,
M.
,
1898
, “
Über Rollkurven und Rollflächen
,”
Z. Math. Phys.
,
43
, pp.
1
35
.
7.
Disteli
,
M.
,
1901
, “
Über Rollkurven und Rollflächen
,”
Z. Math. Phys.
,
46
, pp.
134
181
.
8.
Disteli
,
M.
,
1904
, “
Über Instantane Schraubengeschwindigkeiten und die Verzahnung der Hyberboloidräder
,”
Z. Math. Phys.
,
51
, pp.
51
88
.
9.
Disteli
,
M.
,
1911
, “
Über die Verzahnung der Hyperboloidräder mit geradlinigem Eingriff
,”
Z. Math. Phys.
,
59
, pp.
244
298
.
10.
Disteli
,
M.
,
1914
, “
Über das Analogon der Savaryschen Formel und Konstruktion in der kinematischen Geometrie des Raumes
,”
Z. Math. Phys.
,
62
, pp.
261
309
.
11.
Tölke
,
J.
,
1976
, “
Contributions to the Theory of the Axes of Curvature
,”
Mech. Mach. Theory
,
11
(
2
), pp.
123
130
.10.1016/0094-114X(76)90004-5
12.
Veldkamp
,
J. R.
,
1976
, “
On the Use of Dual Numbers, Vectors, and Matrices in Instantaneous Spatial Kinematics
,”
Mech. Mach. Theory
,
11
(
3
), pp.
141
156
.10.1016/0094-114X(76)90006-9
13.
McCarthy
,
J. M.
, and
Roth
,
B.
,
1981
, “
The Curvature Theory of Line Trajectories in Spatial Kinematics
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
718
724
.10.1115/1.3254978
14.
McCarthy
,
J. M.
,
1987
, “
On the Scalar and Dual Formulations of the Curvature Theory of Line Trajectories
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
1
), pp.
101
109
.10.1115/1.3258772
15.
Phillips
,
J.
,
2003
,
General Spatial Involute Gearing
,
Springer
,
Berlin, Germany
.10.1007/978-3-662-05302-7
16.
Stachel
,
H.
,
2004
, “
On Spatial Involute Gearing
,”
6th International Conference on Applied Informatics
(ICAI 2004),
Eger, Hungary
, Jan. 27–31, pp.
27
39
.
17.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge, UK.
10.1017/CBO9780511547126
18.
Dooner
,
D. B.
,
2012
,
Kinematic Geometry of Gearing
, 2nd ed.,
Wiley, Ltd.
,
Chichester, West Sussex, UK
.10.1002/9781119942474
19.
Beggs
,
J. S.
,
1959
, “
Ein Beitrag zur Analyse Räumlicher Mechanismen
,” Dr.-Ing. dissertation, Technische Hochschule Hannover, Hanover, Germany.
20.
Figliolini
,
G.
, and
Angeles
,
J.
,
2006
, “
The Synthesis of the Pitch Surfaces of Internal and External Skew-Gears and Their Racks
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
794
802
.10.1115/1.2202875
21.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2007
, “
A New Look at the Ball-Disteli Diagram and Its Relevance to Spatial Gearing
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1362
1375
.10.1016/j.mechmachtheory.2006.10.005
22.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2013
, “
On the Synthesis of Spatial Cycloidal Gears
,”
Meccanica
,
48
(
5
), pp.
1239
1249
.10.1007/s11012-012-9664-9
23.
Figliolini
,
G.
,
Stachel
,
H.
, and
Angeles
,
J.
,
2013
, “
On Martin Disteli's Spatial Cycloidal Gearing
,”
Mech. Mach. Theory
,
60
, pp.
73
89
.10.1016/j.mechmachtheory.2012.09.005
24.
Camus
,
Ch. E. L.
,
1759
,
Cours de Mathématique: Elements de Mécanique Statique
, Vol.
2
,
Durand
,
Paris
, pp.
327
329
.
25.
Reuleaux
,
F.
,
1963
,
The Kinematics of Machinery
,
Dover Publications, Inc.
,
New York
, pp.
152
154
.
26.
Wunderlich
,
W.
,
1970
,
Ebene Kinematik, Hochschultaschenbuch 447/447a
,
Bibliographisches Institut
,
Mannheim, Germany
, pp.
212
224
.
27.
Koetsier
,
T.
,
2007
, “
Euler and Kinematics
,”
Leonhard Euler: Life
,
Work and Legacy
,
R. E.
Bradley
, and
C. E.
Sandifer
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
167
194
.
28.
Dooner
,
D. B.
, and
Griffis
,
M. W.
,
2007
, “
On Spatial Euler–Savary Equations for Envelopes
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
865
875
.10.1115/1.2735339
29.
Sesini
,
O.
,
1955
,
Meccanica Applicata alle Macchine: Cinematica
,
Ambrosiana
,
Milan, Italy
, pp.
79
80
.
30.
Ferrari
,
C.
, and
Romiti
,
A.
,
1966
,
Meccanica Applicata alle Macchine
,
UTET
,
Turin, Italy
, pp.
91
93
.
31.
Scotto Lavina
,
G.
,
1987
,
Lezioni di Meccanica Applicata alle Macchine
,
Siderea
,
Rome, Italy
, pp.
56
57
.
32.
Stachel
,
H.
,
2000
, “
Instantaneous Spatial Kinematics and the Invariants of the Axodes
,”
Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball (Ball 2000)
, Cambridge, UK, July 9–12, Paper No. 23.
You do not currently have access to this content.