In this paper, we introduce a new type of spatial parallel robot that is comprised of soft inflatable constraints called trichamber actuators (TCAs). We extend the principles of the freedom and constraint topologies (FACT) synthesis approach to enable the synthesis and analysis of this new type of soft robot. The concepts of passive and active freedom spaces are introduced and applied to the design of general parallel systems that consist of active constraints (i.e., constraint that can be actuated to impart various loads onto the system's stage) that both drive desired motions and guide the system's desired degrees of freedom (DOFs). We provide the fabrication details of the TCA constraints introduced in this paper and experimentally determine their appropriate FACT-based constraint model. We fabricate a soft parallel robot that consists of three TCA constraints and verify and validate its FACT-predicted performance using finite element analysis (FEA) and experimental data. Other such soft robots are synthesized using FACT as case studies.

References

References
1.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kierb
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.10.1080/11762320802557865
2.
Iida
,
F.
, and
Laschi
,
C.
,
2011
, “
Soft Robotics: Challenges and Perspectives
,”
Procedia Comput. Sci.
,
7
, pp.
99
102
.10.1016/j.procs.2011.12.030
3.
Kim
,
S.
,
Laschi
,
C.
, and
Trimmer
,
B.
,
2013
, “
Soft Robotics: A Bioinspired Evolution in Robotics
,”
Trends Biotechnol.
,
31
(
5
), pp.
287
294
.10.1016/j.tibtech.2013.03.002
4.
Morin
,
S. A.
,
Shepart
,
R. F.
,
Kwok
,
S. W.
,
Kwok
,
S. W.
,
Stokes
,
A. A.
,
Nemiroski
,
A.
, and
Whitesides
,
G. M.
,
2012
, “
Camouflage and Display for Soft Machines
,”
Science
,
337
(
6096
), pp.
828
832
.10.1126/science.1222149
5.
McMahn
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the OctArm Continuum Manipulator
,”
2006 IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19, pp.
2336
2341
10.1109/ROBOT.2006.1642051.
6.
Bishop-Moser
,
J.
,
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Design of Soft Robotic Actuators Using Fluid Filled Fiber-Reinforced Elastomeric Enclosures in Parallel Combinations
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2012
), Vilamoura, Portugal, Oct. 7–12, pp.
4264
4269
10.1109/IROS.2012.6385966.
7.
Hirai
,
S.
,
Cusin
,
P.
,
Tanigawa
,
H.
,
Masui
,
T.
,
Konishi
,
S.
, and
Kawamura
,
S.
,
2000
, “
Qualitative Synthesis of Deformable Cylindrical Actuators Through Constraint Topology
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2000
), Takamatsu, Japan, Oct. 31–Nov. 5, pp.
197
202
10.1109/IROS.2000.894604.
8.
Hirai
,
S.
,
Masui
,
T.
, and
Kawamura
,
S.
,
2001
, “
Prototyping Pneumatic Group Actuators Composed of Multiple Single-Motion Elastic Tubes
,”
IEEE International Conference on Robotics and Automation
(
2001 ICRA
), Seoul, South Korea, May 21–26, pp.
3807
3812
10.1109/ROBOT.2001.933211.
9.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
,
1991
, “
Development of Flexible Microactuator and Its Applications to Robotic Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Sacramento, CA, Apr. 9–11, pp.
1622
1627
10.1109/ROBOT.1991.131850.
10.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
.10.1002/adma.201203002
11.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
Dordrecht, The Netherlands
.
12.
Bothema
,
R.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover
,
New York
.
13.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
14.
Hopkins
,
J. B.
,
2007
, “
Design of Parallel Flexure Systems Via Freedom and Constraint Topologies (FACT)
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
15.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
The University Press
,
Cambridge, UK
.
16.
Phillips
,
J.
,
1984
,
Freedom in Machinery: Volume 1, Introducing Screw Theory
,
Cambridge University Press
,
New York
.
17.
Hopkins
,
J. B.
,
2010
, “
Design of Flexure-Based Motion Stages for Mechatronic Systems Via Freedom, Actuation and Constraint Topologies (FACT)
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
A Screw Theory Basis for Quantitative and Graphical Design Tools That Define Layout of Actuators to Minimize Parasitic Errors in Parallel Flexure Systems
,”
Precis. Eng.
,
34
(
4
), pp.
767
776
.10.1016/j.precisioneng.2010.05.004
19.
Su
,
H.-J.
,
Hongliang
,
S.
, and
Yu
,
J. J.
,
2012
, “
A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051009
.10.1115/1.4006441
20.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
21.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
,
4th ed.
,
Oxford University Press
,
New York
.
You do not currently have access to this content.