Wearable robots including exoskeletons, powered prosthetics, and powered orthotics must add energy to the person at an appropriate time to enhance, augment, or supplement human performance. This “energy pumping” at resonance can reduce the metabolic cost of performing cyclic tasks. Many human tasks such as walking, running, and hopping are repeating or cyclic tasks where assistance is needed at a repeating rate at the correct time. By utilizing resonant energy pumping, a tiny amount of energy is added at an appropriate time that results in an amplified response. However, when the system dynamics is varying or uncertain, resonant boundaries are not clearly defined. We have developed a method to add energy at resonance so the system attains the limit cycle based on a phase oscillator. The oscillator is robust to disturbances and initial conditions and allows our robots to enhance running, reduce metabolic cost, and increase hop height. These methods are general and can be used in other areas such as energy harvesting.

References

References
1.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.10.1109/TRO.2008.2008747
2.
Kerestes
,
J.
,
Sugar
,
T. G.
, and
Holgate
,
M.
,
2014
, “
Adding and Subtracting Energy to Body Motion—Phase Oscillator
,”
ASME
Paper No. DETC2014-34405.10.1115/DETC2014-34405
3.
Mooney
,
L. M.
,
Rouse
,
E. J.
, and
Herr
,
H.
,
2014
, “
Autonomous Exoskeleton Reduces Metabolic Cost of Human Walking During Load Carriage
,”
J. Neuroeng. Rehabil.
,
11
(
5
), p.
80
.10.1186/1743-0003-11-80
4.
Kerestes
,
J.
,
Sugar
,
T. G.
,
Flaven
,
T.
,
Holgate
,
M.
, and
Ramachandran
,
R. K.
,
2014
, “
A Method to Add Energy to Running Gait—PogoSuit
,”
ASME
Paper No. DETC2014-34406.10.1115/DETC2014-34406
5.
New
,
P.
,
Wheeler
,
C.
, and
Sugar
,
T. G.
,
2014
, “
Robotic Hopper Using Phase Oscillator Controller
,”
ASME
Paper No. DETC2014-34188.10.1115/DETC2014-34188
6.
Collins
,
S. H.
,
Ruina
,
A.
,
Tedrake
,
R. L.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
7.
Babitsky
,
V. I.
, and
Shipilov
,
A. V.
,
2003
,
Resonant Robotic Systems
,
Springer-Verlag
,
New York
.
8.
Plooij
,
M.
, and
Wisse
,
M.
,
2012
, “
A Novel Spring Mechanism to Reduce Energy Consumption of Robotic Arms
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Vilamoura, Portugal, Oct. 7–12, pp.
2901
2908
.10.1109/IROS.2012.6385488
9.
Righetti
,
L.
,
Buchli
,
J.
, and
Ijspeert
,
A. J.
,
2009
, “
Adaptive Frequency Oscillators and Applications
,”
Open Cybern. Syst. J.
,
3
, pp.
64
69
.10.2174/1874110X00903010064
10.
Rinderknecht
,
M. D.
,
Delaloye
,
F. A.
,
Crespi
,
A.
,
Ronsse
,
R.
, and
Ijspeert
,
A. J.
,
2011
, “
Assistance Using Adaptive Oscillators: Robustness to Errors in the Identification of the Limb Parameters
,”
International Conference on Rehabilitation Robotics
(
ICORR
), Zurich, Switzerland, June 29–July 1.10.1109/ICORR.2011.5975351
11.
Ronsse
,
R.
,
Vitiellow
,
N.
,
Lenzi
,
T.
,
van den Kieboom
,
J.
,
Carrozza
,
M. C.
, and
Ijspeert
,
A. J.
,
2010
, “
Adaptive Oscillators With Human-in-the-Loop: Proof of Concept for Assistance and Rehabilitation
,” 3rd
IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob
), Tokyo, Japan, Sept. 26–29, pp.
668
674
.10.1109/BIOROB.2010.5628021
12.
Blickhan
,
R.
,
1989
, “
The Spring-Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11–12
), pp.
1217
1227
.10.1016/0021-9290(89)90224-8
13.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. B
,
273
(
1603
), pp.
2861
2867
.10.1098/rspb.2006.3637
14.
Nishikawa
,
K. C.
,
Monroy
,
J. A.
,
Uyeno
,
T. E.
,
Yeo
,
S. H.
,
Pai
,
D. K.
, and
Lindstedt
,
S. L.
,
2012
, “
Is Titin a ‘Winding Filament'? A New Twist on Muscle Contraction
,”
Proc. R. Soc. B
,
279
(
1730
), pp.
981
990
.10.1098/rspb.2011.1304
15.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunthera
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
(
5
), pp.
649
655
.10.1016/S0021-9290(01)00245-7
16.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2003
, “
Positive Force Feedback in Bouncing Gaits?
,”
Proc. R. Soc. B
,
270
(
1529
), pp.
2173
2183
.10.1098/rspb.2003.2454
17.
Haeufle
,
D. F. B.
,
Grimmer
,
S.
,
Kalveram
,
K. T.
, and
Seyfarth
,
A.
,
2012
, “
Integration of Intrinsic Muscle Properties, Feed-Forward and Feedback Signals for Generating and Stabilizing Hopping
,”
J. R. Soc., Interface
,
9
(
72
), pp.
1458
1469
.10.1098/rsif.2011.0694
18.
Haeufle
,
D. F. B.
,
Grimmer
,
S.
, and
Seyfarth
,
A.
,
2010
, “
The Role of Intrinsic Muscle Properties for Stable Hopping—Stability is Achieved by the Force–Velocity Relation
,”
Bioinspiration Biomimetics
,
5
(
1
), p.
016004
.10.1088/1748-3182/5/1/016004
19.
Ramlan
,
R.
,
Brennan
,
M. J.
,
Mace
,
B. R.
, and
Kovacic
,
I.
,
2010
, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.10.1007/s11071-009-9561-5
20.
Sugar
,
T. G.
,
Hollander
,
K.
,
Boehler
,
A.
, and
Ward
,
J. A.
,
2013
, “
Comparison and Analysis of a Robotic Tendon and Jackspring Actuator for Wearable Robotic Systems
,”
ASME J. Med. Devices
,
7
(
4
), p.
041003
.10.1115/1.4025182
21.
Stramigioli
,
S.
, and
van Dijk
,
M.
,
2008
, “
Energy Conservative Limit Cycle Oscillations
,”
17th International Federation of Automatic Control World Congress
(
IFAC
), Seoul, Korea, July 6–11, pp.
15666
15671
.10.3182/20080706-5-KR-1001.02649
You do not currently have access to this content.