Modular self-reconfigurable robots (MSRs) are systems which rely on modularity for maneuvering over unstructured terrains, while having the ability to complete multiple assigned functions in a distributed way. An MSR should be equipped with robust and efficient docking interfaces to ensure enhanced autonomy and self-reconfiguration ability. Genderless docking is a necessary criterion to maintain homogeneity of the robot modules. This also enables self-healing of a modular robot system in the case of a failed module. The mechanism needs to be compact and lightweight and at the same time have sufficient strength to transfer loads from other connected modules. This research focuses on the design of a modular robot with four degrees of freedom (4DOF) per module and with the goal of achieving higher workspace flexibility and self-healing capability. To explain the working principle of the robot, forward kinematic transformations were derived and workspace and singularity analysis were performed. In addition, to address the issues of interfacing, a rotary plate genderless single-sided docking mechanism—RoGenSiD—was developed. The design methodology included considerations for minimal space and weight as well as for fault tolerance. As a result, this docking mechanism is applicable for multifaceted docking in lattice-type, chain-type, or hybrid-type MSR systems. Several locomotion gaits were proposed and bench-top testing validated the system performance in terms of self-healing capability and generation of locomotion gaits.

References

References
1.
Yim
,
M.
,
Roufas
,
K.
,
Duff
,
D.
,
Zhang
,
Y.
,
Eldershaw
,
C.
, and
Homans
,
S.
,
2003
, “
Modular Reconfigurable Robots in Space Applications
,”
Auton. Rob. J.
,
14
(
2–3
), pp.
225
237
.10.1023/A:1022287820808
2.
Chu
,
K. D.
,
Hossain
,
S. G. M.
, and
Nelson
,
C.
,
2011
, “
Design of a Four DOF Modular Self-Reconfigurable Robot With Novel Gaits
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE
), Washington, DC, August 28–31,
ASME
Paper No. DETC2011-47746.10.1115/DETC2011-47746
3.
Hossain
,
S. G. M.
,
Nelson
,
C. A.
, and
Dasgupta
,
P.
,
2013
, “
RoGenSiD—A Rotary-Plate Genderless Single-Sided Docking Mechanism for Modular Self-Reconfigurable Robots
,” ASME International Design Engineering Technical Conferences and Information in Engineering Conference (ASME IDETC/CIE), Portland, OR, August 4–7,
ASME
Paper No. DETC2013-12938.10.1115/DETC2013-12938
4.
Yim
,
M.
,
Shen
,
W.
,
Salemi
,
B.
,
Rus
,
D.
,
Moll
,
M.
,
Lipson
,
H.
,
Klavins
,
E.
, and
Chirikjian
,
G. S.
,
2007
, “
Modular Self-Reconfigurable Robot Systems: Challenges and Opportunities for the Future
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
43
53
.10.1109/MRA.2007.339623
5.
Murata
,
S.
, and
Kurokawa
,
H.
,
2007
, “
Self-Reconfigurable Robot: Shape-Changing Cellular Robots can Exceed Conventional Robot Flexibility
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
71
78
.10.1109/MRA.2007.339607
6.
Yim
,
M.
,
Zhang
,
Y.
,
Roufas
,
K.
,
Duff
,
D.
, and
Eldershaw
,
C.
,
2003
, “
Connecting and Disconnecting for Chain Self-Reconfiguration With PolyBot
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
442
451
.10.1109/TMECH.2002.806221
7.
Yim
,
M.
,
1994
, “
New Locomotion Gaits
,”
IEEE International Conference on Robotics and Automation
,
San Diego, CA
, May 8–13, pp.
2508
2514
.10.1109/ROBOT.1994.351134
8.
Castano
,
A.
,
Behar
,
A.
, and
Will
,
P.
,
2002
, “
The Conro Modules for Reconfigurable Robots
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
403
409
.10.1109/TMECH.2002.806233
9.
Kurokawa
,
H.
,
Tomita
,
K.
,
Kamimura
,
A.
,
Kokaji
,
S.
,
Hasuo
,
T.
, and
Murata
,
S.
,
2008
, “
Distributed Self Reconfiguration of M-TRAN III Modular Robotic System
,”
Int. J. Rob. Res.
,
27
(
3–4
), pp.
373
386
.10.1177/0278364907085560
10.
Salemi
,
B.
,
Moll
,
M.
, and
Shen
,
W.
,
2006
, “
Superbot: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Beijing, October 9–15, pp.
3636
3641
.
11.
Moeckel
,
R.
,
Faquier
,
C.
,
Drapel
,
K.
,
Dittrich
,
E.
,
Upegui
,
A.
, and
Ijspeert
,
A.
,
2006
, “
Exploring Adaptive Locomotion With YaMor: A Novel Autonomous Modular Robot With Bluetooth Interface
,”
Ind. Rob.
,
33
(
4
), pp.
285
290
.10.1108/01439910610667908
12.
Zykov
,
V.
,
Mytilinaios
,
S.
,
Adams
,
B.
, and
Lipson
,
H.
,
2007
, “
Evolved and Designed Self-Reproducing Modular Robotics
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
308
319
.10.1109/TRO.2007.894685
13.
Lee
,
W.
, and
Sanderson
,
A.
,
1998
, “
Dynamic Simulation of Tetrahedron-Based Tetrobot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Victoria, Canada, October 13–17, Vol.
1
, pp.
630
635
.10.1109/IROS.1998.724689
14.
Ryland
,
G.
,
2010
, “
Design of iMobot, an Intelligent Reconfigurable Mobile Robot With Novel Locomotion
,”
IEEE International Conference on Robotics and Automation
,
(ICRA)
, Anchorage, AK, May 3–7, pp.
60
65
.10.1109/ROBOT.2010.5509359
15.
Davey
,
J.
,
Kwok
,
N.
, and
Yim
,
M.
,
2012
, “
Emulating Self-Reconfigurable Robots—Design of the SMORES System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)
, Vilamoura, Portugal, October 7–12, pp.
4464
4469
.10.1109/IROS.2012.6385845
16.
Yim
,
M.
,
1994
, “
Locomotion With a Unit-Modular Reconfigurable Robot
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
17.
Pamecha
,
A.
,
Chiang
,
C. J.
,
Stein
,
D.
, and
Chirikjian
,
G. S.
,
1996
, “
Design and Implementation of Metamorphic Robots
,”
ASME Design Engineering Technical Conference and Computers in Engineering Conference
, Irvine, CA, August 18–22, Paper No. 96-DETC/MECH-1149.
18.
Rus
,
D.
, and
Vona
,
M.
,
1999
, “
Self-Reconfiguration Planning With Compressible Unit Modules
,”
IEEE International Conference on Robotics and Automation
, Detroit, MI, May 10–15, pp.
2513
2530
.10.1109/ROBOT.1999.773975
19.
Murata
,
S.
,
Tomita
,
K.
,
Yoshida
,
E.
,
Kurokawa
,
H.
, and
Kokaji
,
S.
,
2000
, “
Self-Reconfigurable Robot Module Design and Simulation
,”
6th International Conference on Intelligent Autonomous Systems
(IAS-6), Venice, Italy, July 25-27, pp.
911
917
.
20.
Kirby
,
B.
,
Aksak
,
B.
,
Hoburg
,
J.
,
Mowry
,
T.
, and
Pillai
,
P.
,
2007
, “
A Modular Robotic System Using Magnetic Force Effectors
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2007)
, San Diego, CA, October 29–November 2, pp.
2787
2793
.10.1109/IROS.2007.4399444
21.
Zykov
,
V.
,
Mytilinaios
,
E.
,
Adams
,
B.
, and
Lipson
,
H.
,
2005
, “
Self-Reproducing Machines
,”
Nature
435
(
7038
), pp.
163
164
.10.1038/435163a
22.
Gilpin
,
K.
,
Knaian
,
A.
, and
Rus
,
D.
,
2010
, “
Robot Pebbles: One Centimeter Modules for Programmable Matter Through Self-Disassembly
,”
IEEE International Conference on Robotics and Automation
(ICRA)
, Anchorage, AK, May 3–7, pp.
2485
2492
.10.1109/ROBOT.2010.5509817
23.
Ostergard
,
E. H.
,
Kassow
,
K.
,
Beck
,
R.
, and
Lund
,
H. H.
,
2006
, “
Design of the ATRON Lattice-Based Self-Reconfigurable Robot
,”
Auton. Rob.
,
21
(
2
), pp.
165
183
.10.1007/s10514-006-8546-1
24.
Sproewitz
,
A.
,
Asadpour
,
M.
,
Billard
,
A.
,
Dillenbourg
,
P.
, and
Ijspeert
,
J.
,
2008
, “
Roombots—Modular Robots for Adaptive Furniture
,”
Workshop on Self-Reconfigurable Robots, Systems and Applications at IROS08
, Nice, France, September 22, pp.
59
63
.
25.
Davey
,
J.
,
Sastra
,
J.
,
Piccoli
,
M.
, and
Yim
,
M.
,
2012
, “
ModLock: A Manual Connector for Reconfigurable Modular Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)
, Vilamoura, Portugal, October 7–12, pp.
3217
3222
.10.1109/IROS.2012.6386190
26.
Shen
,
W.-M.
,
Kovac
,
R.
, and
Rubenstein
,
M.
,
2009
, “
SINGO: A Single-End-Operative and Genderless Connector for Self-Reconfiguration, Self-Assembly and Self-Healing
,”
IEEE International Conference on Robotics and Automation
(ICRA'09)
, Kobe, Japan, May 12–17, pp.
4253
4258
.10.1109/ROBOT.2009.5152408
27.
Craig
,
J. J.
,
2005
,
Introduction to Robotics, Mechanics and Control
,
3rd ed.
,
Pearson Education, Inc.
, Upper Saddle River, NJ, pp.
149
150
.
28.
Kutzer
,
M. D. M.
,
Moses
,
M. S.
,
Brown
,
C. Y.
,
Scheidt
,
D. H.
,
Chirikjian
,
G. S.
, and
Armand
,
M.
,
2010
, “
Design of a New Independently-Mobile Reconfigurable Modular Robot
,”
IEEE International Conference on Robotics and Automation
,
(ICRA)
, Anchorage, AK, May 3–7, pp.
2758
2764
.10.1109/ROBOT.2010.5509726
29.
Wolfe
,
K. C.
,
Moses
,
M. S.
,
Kutzer
,
M. D. M.
, and
Chirikjian
,
G. S.
,
2012
, “
M3Express: A Low-Cost Independently-Mobile Reconfigurable Modular Robot
,”
IEEE International Conference on Robotics and Automation
(ICRA)
, Minneapolis, St. Paul, MN, May 14–18, pp.
2704
2710
.10.1109/ICRA.2012.6224971
30.
Baca
,
J.
,
Hossain
,
S. G. M.
,
Dasgupta
,
P.
, and
Nelson
,
C. A.
,
2014
, “
ModRED: Hardware Design and Reconfiguration Planning for a High Dexterity Modular Self-Reconfigurable Robot for Extra-Terrestrial Exploration
,”
J. Rob. Auton.
Syst.,
62
(7), pp. 1002–1015.10.1016/j.robot.2013.08.008
31.
Yim
,
M.
,
Shirmohammadi
,
B.
,
Sastra
,
J.
,
Park
,
M.
,
Dugan
,
M.
, and
Taylor
,
C. J.
,
2007
, “
Towards Robotic Self-Reassembly After Explosion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2007)
, San Diego, CA, October 29–November 2, pp. 2767–2772.10.1109/IROS.2007.4399594
32.
Santos Merino
,
C.
, and
Tosunoglu
,
S.
,
2004
, “
Design of a Crawling Gait for a Modular Robot
,”
17th Florida Conference on Recent Advances in Robotics
Orlando, FL, May 6–7.
33.
Chen
,
I.-M.
,
Yeo
,
S. H.
, and
Gao
,
Y.
,
2001
, “
Locomotive Gait Generation for Inchworm-Like Robots Using Finite State Approach
,”
Robotica
19
(
5
), pp.
535
542
.10.1017/S0263574700003271
You do not currently have access to this content.