In this manuscript, a novel class of parallel manipulators for flexible manufacturing is described. A parallel manipulator that is part of this class is proposed and studied. The proposed manipulator possesses machine flexibility such that it can adapt its properties to a multitude of future and unknown functional requirements. Notably, a combination of redundancy and a hybrid topology is utilized in this class. A systematic analysis is conducted that involves mobility, kinematics, instantaneous kinematics, Jacobian formulation, workspace, traditional and conservative stiffness mapping as well as optimal force distribution. These properties are discussed as their relation to flexibility. The proposed manipulator is also compared to the Stewart platform in force distribution circumstances. It is illustrated that the proposed robotic system is able to adapt and change its properties by changing its motion manifold or internal preloads actively.

References

References
1.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
Hermes, Paris
.
2.
Zhang
,
D.
,
2010
,
Parallel Robotic Machine Tools
,
Springer
,
New York
.
3.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
1st ed.
,
Springer, Inc.
, Berlin.
4.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
134
(
3
), p.
031005
.10.1115/1.4005865
5.
Wolf
,
A.
, and
Glozman
,
D.
,
2010
, “
Singularity Analysis of Large Workspace 3RRRS Parallel Mechanism Using Line Geometry and Linear Complex Approximation
,”
ASME J. Mech. Rob.
3
(
1
), p.
011004
.10.1115/1.4002815
6.
Alizade
,
R. I.
, and
Tagiyev
,
N. R.
,
1994
, “
A Forward and Reverse Displacement Analysis of a 6-DOF In-Parallel Manipulator
,”
Mech. Mach. Theory
29
(
1
), pp.
115
124
.10.1016/0094-114X(94)90024-8
7.
Glozman
,
D.
, and
Shoham
,
M.
,
2009
, “
Novel 6-DOF Parallel Manipulator With Large Workspace
,”
Robotica
27
(6), pp.
891
895
.10.1017/S0263574708005286
8.
Sims'an
,
N.
,
Glozman
,
D.
, and
Shoharn
,
M.
,
1998
, “
Design Considerations of New Six Degrees-of-Freedom Parallel Robots
,”
IEEE International Conference on Robotics and Automation
, Leuven, Belgium, May 16–20, pp.
1327
1333
.10.1109/ROBOT.1998.677289
9.
Qi
,
C. K.
,
Zhao
,
X. C.
,
Jin
,
Z. L.
,
Zhang
,
X. X.
,
Ma
,
C. X.
, and
Gao
,
F.
,
2011
, “
Workspace of a 3-RRPS Parallel Robot Leg With a Constant Orientation
,” 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, June 19–25, Paper No. A12_420.
10.
Yang
,
G.
,
Chen
,
I.-M.
,
Chen
,
W.
, and
Yeo
,
S. H.
,
2003
, “
Design and Analysis of a 3-RPRS Modular Parallel Manipulator for Rapid Deployment
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM 2003
), Kobe, Japan, July 20–24.10.1109/AIM.2003.1225522
11.
Simaan
,
N.
,
1999
, “
Analysis and Synthesis of Parallel Robots for Medical Applications
,” Master's thesis, Israel Institute of Technology, Haifa, Israel.
12.
Ecorchard
,
G.
,
2010
, “
Static Accuracy Enhancement of Redundantly Static Accuracy Enhancement of Redundantly Actuated Parallel Kinematic Machine Tools
,” Ph.D. thesis, Fakultat fur Maschinenbau, Technische Universitat Chemnitz, Chemnitz, Germany.
13.
Nokleby
,
S.
,
Fisher
,
R.
,
Podhorodeski
,
R.
, and
Firmani
,
F.
,
2005
, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
,
40
(
5
), pp.
578
599
.10.1016/j.mechmachtheory.2004.10.005
14.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
109
118
.10.1115/1.1641189
15.
Zhao
,
Y.
,
Gao
,
F.
,
Li
,
W.
,
Liu
,
W.
, and
Zhao
,
X.
,
2009
, “
Development of 6-dof Parallel Seismic Simulator With Novel Redundant Actuation
,”
Mechatronics
,
19
(
3
), pp.
422
427
.10.1016/j.mechatronics.2008.11.013
16.
Bi
,
Z.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput. Integr. Manuf.
,
25
(
6
), pp.
951
961
.10.1016/j.rcim.2009.04.004
17.
ElMaraghy
,
H.
,
2005
, “
Flexible and Reconfigurable Manufacturing Systems Paradigms
,”
Int. J. Flexible Manuf. Syst.
,
17
(
4
), pp.
261
276
.10.1007/s10696-006-9028-7
18.
Coppola
,
G.
,
Zhang
,
D.
,
Liu
,
K.
, and
Gao
,
Z.
,
2013
, “
Design of Parallel Mechanisms for Flexible Manufacturing With Reconfigurable Dynamics
,”
ASME J. Mech. Des.
135
(
7
), p.
071011
.10.1115/1.4024366
19.
Huang
,
H.
,
Li
,
B.
,
Deng
,
Z.
, and
Hu
,
Y.
,
2012
, “
A 6-DOF Adaptive Parallel Manipulator With Large Tilting Capacity
,”
Rob. Comput. Integr. Manuf.
,
28
(
2
), pp.
275
283
.10.1016/j.rcim.2011.09.009
20.
Rosati
,
G.
,
Zanotto
,
D.
, and
Agrawal
,
S.
,
2011
, “
On the Design of Adaptive Cable-Driven Systems
,”
ASME J. Mech. Rob.
3
(
2
), p.
021004
.10.1115/1.4003580
21.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
128
(
1
), pp.
220
229
.10.1115/1.1901708
22.
Tsai
,
L.-W.
,
1999
,
Robot Analysis—The Mechanics of Serial and Parallel Manipulators
,
Wiley
, New York.
23.
Ebert-Uphoff
,
I.
,
Lee
,
J.
, and
Lipkin
,
H.
,
2002
, “
Characteristic Tetrahedron of Wrench Singularities for Parallel Manipulators With Three Legs
,”
Proc. Inst. Mech. Eng., Part C
, 216(1), pp.
81
93
.10.1243/0954406021524936
24.
Gosselin
,
C.
, and
Angles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
25.
Coppola
,
G.
,
Zhang
,
D.
, and
Liu
,
K.
,
2014
, “
Development of a 6-dof Reconfigurable Hybrid Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
30
(2), pp.
99
106
.10.1016/j.rcim.2013.09.011
26.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(5), pp.
662
679
.10.1016/j.mechmachtheory.2010.12.008
27.
Gosselin
,
C. M.
, and
Zhang
,
D.
,
2002
, “
Stiffness Analysis of Parallel Mechanisms Using a Lumped Model
,”
Int. J. Rob. Autom.
,
17
(
1
), pp.
17
27
.
28.
Gao
,
Z.
,
Zhang
,
D.
,
Hu
,
X.
, and
Ge
,
Y.
,
2010
, “
Design, Analysis, and Stiffness Optimization of a Three Degree of Freedom Parallel Manipulator
,”
Robotica
,
28
(3), pp.
349
357
.10.1017/S0263574709005657
29.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.10.1109/70.56657
30.
Pashkevich
,
A.
,
Klimchik
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Multi-Chain Parallel Robotic Systems
,”
J. Autom., Mobile Rob. Intell. Syst.
,
3
(
3
), pp.
75
82
.
31.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “
Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms
,”
Advances in Robot Kinematics: Analysis and Control
, Kluwer Academic Publishers, Dordrecht, Netherlands, pp.
105
114
.10.1007/978-94-015-9064-8_11
32.
Kumar
,
V.
, and
Waldron
,
K.
,
1988
, “
Force Distribution in Closed Kinematic Chains
,”
IEEE J. Rob. Autom.
,
4
(
6
), pp.
657
664
.10.1109/56.9303
33.
Garg
,
V.
,
Nokleby
,
S.
, and
Carretero
,
J.
,
2009
, “
Wrench Capability Analysis of Redundantly Actuated Spatial Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
1070
1081
.10.1016/j.mechmachtheory.2008.05.011
34.
Kock
,
S.
, and
Schumacher
,
W.
,
1998
, “
A Parallel x-y Manipulator With Actuation Redundancy for High-Speed and Active-Stiffness Applications
,”
IEEE International Conference on Robotics and Automation
, Vol.
3
, Leuven, Belgium, May 16–20, pp.
2295
2300
.10.1109/ROBOT.1998.680665
35.
Shin
,
H.
,
Lee
,
S.
,
Jeong
,
J.
, and
Kim
,
J.
,
2012
, “
Antagonistic Stiffness Optimization of Redundantly Actuated Parallel Manipulators in a Predefined Workspace
,”
IEEE/ASME Mechatron.
,
18
(
3
), pp.
1161
1169
.10.1109/TMECH.2012.2198224
36.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Geometric Interpretation of the Derivatives of Parallel Robots' Jacobian Matrix With Application to Stiffness Control
,”
ASME J. Mech. Des.
125
(
1
), pp.
33
42
.10.1115/1.1539514
37.
Huang
,
C.
,
Hung
,
W.-H.
, and
Kao
,
I.
,
2002
, “
New Conservative Stiffness Mapping for the Stewart–Gough Platform
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
), Washington, DC, May 11–15, pp.
823
828
.10.1109/ROBOT.2002.1013459
You do not currently have access to this content.