This paper presents an approach to the profile synthesis of planar, variable joints by combining higher variable joints. The possible permutations of planar, variable joints that change from a rotational to translational motion will be enumerated. A method will be provided to determine the profiles of variable joints, and a practical example will be presented to illustrate the proposed method.

References

References
1.
Kuo
,
C.-H.
, and
Yan
,
H.-S.
,
2007
, “
On the Mobility and Configuration Singularity of Mechanisms With Variable Topologies
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
617
624
.10.1115/1.2717230
2.
Dai
,
J.
, and
Jones
,
J. R.
,
1998
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
25th ASME Biennial Mechanisms and Robotics Conference
, Atlanta, GA, September 13–16, ASME Paper No. DETC98/MECH-5902.
3.
Kuo
,
C.
,
2004
, “
Structural Characteristics of Mechanisms With Variable Topologies Taking Into Account the Configuration Singularity
,” Master's thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
4.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2010
, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chanin and Its Evolved Mechanism
,”
ASME J. Mech. Des.
,
132
(
6
), p.
121001
.10.1115/1.4002691
5.
Gan
,
D.
,
Dai
,
J.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.10.1115/1.3211023
6.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
, “
Representations and Identifications of Structural and Motion State Characteristics of Mechanisms With Variable Topologies
,”
Trans. Can. Soc. Mech. Eng.
,
30
(1), pp.
19
40
.
7.
Wohlhart
,
K.
,
1996
, “
Kinematotropic Linkages
,”
Recent Advances in Robot Kinematics
,
J.
Lenarcic
, and
V.
Parenti-Castelli
, eds.,
Kluwer Academic, Dordrecht
,
Netherlands
, pp.
359
368
.
8.
Shieh
,
W.
,
Sun
,
F.
, and
Chen
,
D.
,
2009
, “
On the Topological Representation and Compatibility of Variable Topology Mechanisms
,”
ASME
Paper No. DETC2009-87205.10.1115/DETC2009-87205
9.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
,
2006
. “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
384
391
.10.1115/1.2166854
10.
Slaboch
,
B. J.
, and
Voglewede
,
P. A.
,
2013
. “
Planar, Higher Variable Joints for Reconfigurable Mechanisms
,”
ASME
Paper No. DETC2013-13120.10.1115/DETC2013-13120
11.
Reuleaux
,
F.
,
1963
,
The Kinematics of Machinery
,
Dover Publications
, Mineola, NY.
12.
Sacks
,
E.
, and
Joskowicz
,
L.
,
2010
,
The Configuration Space Method for Kinematic Design of Mechanism
,
The MIT Press
,
London
.
13.
Rimon
,
E.
, and
Burdick
,
J.
,
1995
, “
A Configuration Space Analysis of Bodies in Contact—I. 1st Order Mobility
,”
Mech. Mach. Theory
,
30
(
6
), pp.
897
912
.10.1016/0094-114X(95)00002-G
14.
Rimon
,
E.
, and
Burdick
,
J.
,
1995
, “
A Configuration Space Analysis of Bodies in Contact—II. 2nd Order Mobility
,”
Mech. Mach. Theory
,
30
(
6
), pp.
913
928
.10.1016/0094-114X(95)00003-H
15.
Latombe
,
J.
,
2001
,
Robot Motion Planning
,
6th ed.
,
Kluwer Academic Publishers
, Norwell, MA.
You do not currently have access to this content.