Many existing exoskeletons have followed a similar design concept that a rigid kinematic chain is actuated to mobilize a human wearer in spite of the intended applications. For performance-augmenting applications where an exoskeleton is usually paired with a specific wearer, the human–machine kinematic compatibility might be well maintained. However, in a clinical setting for rehabilitation where one exoskeleton is often shared by a group of patients, it will be difficult for the therapists to guarantee the on-site adjustments would accurately fit the exoskeleton to each individual patient with his/her unique anatomy. This paper proposes a continuum shoulder exoskeleton design to realize anatomy adaptive assistances (AAAs) for hemiparetic patients in a purely assistive mode where patient's limb motions are passive. The shoulder exoskeleton conforms to distinct human anatomies adaptively due to its intrinsic flexibility but still manages to deliver motion assistances in a consistent way. The design concept and the system descriptions are elaborated, including kinematics, statics, system construction, actuation, experimental validation, backbone shape identification, motion compensation, manikin trials, etc. The results suggest that it is possible to design a continuum exoskeleton to assist different patients with their limb movements, while no mechanical adjustments on the exoskeleton shall be performed.

References

References
1.
Brewer
,
B. R.
,
McDowell
,
S. K.
, and
Worthen-Chaudhari
,
L. C.
,
2007
, “
Poststroke Upper Extremity Rehabilitation: A Review of Robotic Systems and Clinical Results
,”
Top. Stroke Rehabil.
,
14
(
6
), pp.
22
44
.10.1310/tsr1406-22
2.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.10.1109/TRO.2008.915453
3.
Vukobratovic
,
M.
,
Hristic
,
D.
, and
Stojiljkovic
,
Z.
,
1974
, “
Development of Active Anthropomorphic Exoskeletons
,”
Med. Biol. Eng. Comput.
,
12
(
1
), pp.
66
80
.10.1007/BF02629836
4.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
.10.1109/TMECH.2006.871087
5.
Walsh
,
C. J.
,
Paluska
,
D.
,
Pasch
,
K.
,
Grand
,
W.
,
Valiente
,
A.
, and
Herr
,
H.
,
2006
, “
Development of a Lightweight, Underactuated Exoskeleton for Load-Carrying Augmentation
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
),
Orlando, FL
, May 15–19, pp.
3485
3491
.10.1109/ROBOT.2006.1642234
6.
Durfee
,
W. K.
, and
Rivard
,
A.
,
2004
, “
Preliminary Design and Simulation of a Pneumatic, Stored-Energy, Hybrid Orthosis for Gait Restoration
,”
ASME
Paper No. IMECE2004-60075.10.1115/IMECE2004-60075
7.
Hornby
,
T. G.
,
Zemon
,
D. H.
, and
Campbell
,
D.
,
2005
, “
Robotic-Assisted, Body-Weight-Supported Treadmill Training in Individuals Following Motor Incomplete Spinal Cord Injury
,”
Phys. Therapy
,
85
(
1
), pp.
52
66
.
8.
Banala
,
S. K.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Krishnamoorthy
,
V.
,
Hsu
,
W.-L.
,
Scholz
,
J.
, and
Rudolph
,
K.
,
2006
, “
Gravity-Balancing Leg Orthosis and Its Performance Evaluation
,”
IEEE Trans. Rob.
,
22
(
6
), pp.
1228
1239
.10.1109/TRO.2006.882928
9.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Rob. Res.
,
25
(
3
), pp.
261
281
.10.1177/0278364906063829
10.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High Performance 2-DOF Over-Actuated Parallel Mechanism for Ankle Rehabilitation
,”
IEEE International Conference on Robotics and Automation
(
ICRA ‘09
),
Kobe, Japan
, May 12–17, pp.
2180
2186
.10.1109/ROBOT.2009.5152604
11.
Farris
,
R. J.
,
Quintero
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
6
), pp.
652
659
.10.1109/TNSRE.2011.2163083
12.
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2003
, “
Development and Control of a ‘Soft-Actuated’ Exoskeleton for Use in Physiotherapy and Training
,”
Auton. Rob.
,
15
(
1
), pp.
21
33
.10.1023/A:1024484615192
13.
Perry
,
J. C.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.10.1109/TMECH.2007.901934
14.
Gupta
,
A.
,
O'Malley
,
M. K.
,
Patoglu
,
V.
, and
Burgar
,
C.
,
2008
, “
Design, Control and Performance of RiceWrist: A Force Feedback Wrist Exoskeleton for Rehabilitation and Training
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
233
251
.10.1177/0278364907084261
15.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Aalsma
,
A. M. M.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2009
, “
Dampace: Design of an Exoskeleton for Force-Coordination Training in Upper-Extremity Rehabilitation
,”
ASME J. Med. Devices
,
3
(
3
), p.
031003
.10.1115/1.3191727
16.
Klein
,
J.
,
Spencer
,
S.
,
Allington
,
J.
,
Bobrow
,
J. E.
, and
Reinkensmeyer
,
D. J.
,
2010
, “
Optimization of a Parallel Shoulder Mechanism to Achieve a High-Force, Low-Mass, Robotic-Arm Exoskeleton
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
710
715
.10.1109/TRO.2010.2052170
17.
Wolbrecht
,
E. T.
,
Reinkensmeyer
,
D. J.
, and
Bobrow
,
J. E.
,
2010
, “
Pneumatic Control of Robots for Rehabilitation
,”
Int. J. Rob. Res.
,
29
(
1
), pp.
23
38
.10.1177/0278364909103787
18.
Agrawal
,
S. K.
,
Dubey
,
V. N.
,
Gangloff
,
J. J.
,
Brackbill
,
E.
,
Mao
,
Y.
, and
Sangwan
,
V.
,
2009
, “
Design and Optimization of a Cable Driven Upper Arm Exoskeleton
,”
ASME J. Med. Devices
,
3
(
3
), p.
031004
.10.1115/1.3191724
19.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable-Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Rob.
,
28
(
4
), pp. 922–
931.
10.1109/TRO.2012.2189496
20.
Loureiro
,
R. C. V.
, and
Harwin
,
W. S.
,
2007
, “
Reach & Grasp Therapy: Design and Control of a 9-DOF Robotic Neuro-Rehabilitation System
,”
IEEE 10th International Conference on Rehabilitation Robotics
(
ICORR 2007
),
Noordwijk, Netherlands
, June 13–15, pp.
757
763
.10.1109/ICORR.2007.4428510
21.
Aguirre-Ollinger
,
G.
,
Colgate
,
J. E.
,
Peshkin
,
M. A.
, and
Goswami
,
A.
,
2010
, “
Design of an Active One-Degree-of-Freedom Lower-Limb Exoskeleton With Inertia Compensation
,”
Int. J. Rob. Res.
,
30
(
4
), pp.
486
499
.10.1177/0278364910385730
22.
Kawamoto
,
H.
,
Lee
,
S.
,
Kanbe
,
S.
, and
Sankai
,
Y.
,
2003
, “
Power Assist Method for HAL-3 Using EMG-Based Feedback Controller
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Washington, DC
, October 5–8, pp.
1648
1653
.10.1109/ICSMC.2003.1244649
23.
Yamamoto
,
K.
,
Ishii
,
M.
,
Noborisaka
,
H.
, and
Hyodo
,
K.
,
2004
, “
Stand Alone Wearable Power Assisting Suit: Sensing and Control Systems
,”
13th IEEE International Workshop on Robot and Human Interactive Communication
(
ROMAN 2004
),
Kurashiki, Japan
, September 20–22, pp.
661
666
.10.1109/ROMAN.2004.1374841
24.
Fleischer
,
C.
, and
Hommel
,
G.
,
2008
, “
A Human–Exoskeleton Interface Utilizing Electromyography
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
872
882
.10.1109/TRO.2008.926860
25.
Sharma
,
V.
,
McCreery
,
D. B.
,
Han
,
M.
, and
Pikov
,
V.
,
2010
, “
Bidirectional Telemetry Controller for Neuroprosthetic Devices
,”
IEEE Trans. Neural Syste. Rehabil. Eng.
,
18
(
1
), pp.
67
74
.10.1109/TNSRE.2009.2036849
26.
Stienen
,
A. H. A.
,
Hekman
,
E. E. G.
,
ter Braak
,
H.
,
Aalsma
,
A. M. M.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2010
, “
Design of a Rotational Hydroelastic Actuator for a Powered Exoskeleton for Upper Limb Rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
57
(
3
), pp.
728
735
.10.1109/TBME.2009.2018628
27.
Bergamasco
,
M.
,
Salsedo
,
F.
,
Marcheschi
,
S.
,
Lucchesi
,
N.
, and
Fontana
,
M.
,
2010
, “
A Novel Compact and Lightweight Actuator for Wearable Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Anchorage, AK
, May 3–7, pp.
4197
4203
.10.1109/ROBOT.2010.5509167
28.
Schiele
,
A.
, and
van der Helm
,
F. C. T.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.10.1109/TNSRE.2006.881565
29.
Kim
,
H.
,
Miller
,
L. M.
,
Byl
,
N.
,
Abrams
,
G. M.
, and
Rosen
,
J.
,
2012
, “
Redundancy Resolution of the Human Arm and an Upper Limb Exoskeleton
,”
IEEE Trans. Biomed. Eng.
,
59
(
6
), pp.
1770
1779
.10.1109/TBME.2012.2194489
30.
Sergi
,
F.
,
Accoto
,
D.
,
Tagliamonte
,
N. L.
,
Carpino
,
G.
, and
Guglielmelli
,
E.
,
2011
, “
A Systematic Graph-Based Method for the Kinematic Synthesis of Non-Anthropomorphic Wearable Robots for the Lower Limbs
,”
Front. Mech. Eng.
,
6
(
1
), pp.
61
70
.10.1007/s11465-011-0206-2
31.
Jarrassé
,
N.
, and
Morel
,
G.
,
2012
, “
Connecting a Human Limb to an Exoskeleton
,”
IEEE Trans. Rob.
,
28
(
3
), pp.
697
709
.10.1109/TRO.2011.2178151
32.
van den Bogert
,
A. J.
,
2003
, “
Exotendons for Assistance of Human Locomotion
,”
Biomed. Eng. Online
,
2
(
17
), pp.
1
8
.10.1186/1475-925X-2-17
33.
Kobayashi
,
H.
, and
Hiramatsu
,
K.
,
2004
, “
Development of Muscle Suit for Upper Limb
,”
IEEE International Conference on Robotics and Automation
(
ICRA ‘04
),
New Orleans, LA
, April 26–May 1, pp.
2480
2485
.10.1109/ROBOT.2004.1307433
34.
Xu
,
K.
,
Qiu
,
D.
, and
Simaan
,
N.
,
2011
, “
A Pilot Investigation of Continuum Robots as a Design Alternative for Upper Extremity Exoskeletons
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
),
Phuket, Thailand
, December 7–11, pp.
656
662
.10.1109/ROBIO.2011.6181361
35.
Xu
,
K.
, and
Qiu
,
D.
,
2013
, “
Experimental Design Verification of a Compliant Shoulder Exoskeleton
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Karlsruhe, Germany
, May 6–10, pp.
3894
3901
.10.1109/ICRA.2013.6631125
36.
Matsui
,
R.
,
Tobushi
,
H.
,
Furuichi
,
Y.
, and
Horikawa
,
H.
,
2004
, “
Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys
,”
ASME J. Eng. Mater. Technol.
,
126
(
4
), pp.
384
391
.10.1115/1.1789952
37.
Xu
,
K.
, and
Simaan
,
N.
,
2008
, “
An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
576
587
.10.1109/TRO.2008.924266
38.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for the Kinematics, Statics and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
.10.1115/1.4000519
39.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
40.
Rosen
,
J.
,
Perry
,
J. C.
,
Manning
,
N.
,
Burns
,
S.
, and
Hannaford
,
B.
,
2005
, “
The Human Arm Kinematics and Dynamics During Daily Activities—Toward a 7 DOF Upper Limb Powered Exoskeleton
,”
12th International Conference on Advanced Robotics
(
ICAR '05
),
Seattle, WA
, July 18–20, pp.
532
539
.10.1109/ICAR.2005.1507460
41.
Simaan
,
N.
,
Xu
,
K.
,
Kapoor
,
A.
,
Wei
,
W.
,
Kazanzides
,
P.
,
Flint
,
P.
, and
Taylor
,
R. H.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1134
1153
.10.1177/0278364908104278
You do not currently have access to this content.