Driven by requirements of five-axis numerical control (NC) machine for its executive mechanism, this paper creatively proposes a flow path to synthesize a novel class of n-degree-of-freedom (n-DoF, 4 ≤ n ≤ 6) parallel manipulators (PMs) resorting to four steps, and takes a patented 5-DoF PM, named T5, for example to demonstrate the flow path in depth. Comparing with existing five-axis executive mechanisms, this novel class of the PMs has some advantages of light end-effector, good static, dynamic performance, and so on. Upon the underlying architecture of T5, the kinematic analysis and optimal design are carried out for the first time, in which two essential procedures are involved, one is the kinematic performance index by means of the reciprocal product associated with the wrench screw and twist screw with specific physical meaning, the other is the design method adopted to perform the multi-objective dimensional synthesis using an artificial intelligence approach, that is nondominated sorting genetic algorithm II (NSGA-II). This paper is aimed at laying a solid theoretical and technical foundation for the prototype design and manufacture of T5 PM.

Reference

Reference
1.
Neumann
,
K. E.
,
2001
, “
System and Method for Controlling a Robot
,” U.S. Patent No. 6,301,525.
2.
Joachim
,
W.
,
2000
, “
Articulated Tool Head
,” U.S. Patent No. 6,431,802.
3.
Li
,
Q. C.
,
Chen
,
Z.
,
Chen
,
Q. H.
,
Wu
,
C. Y.
, and
Hu
,
X. D.
,
2011
, “
Parasitic Motion Comparison of 3-PRS Parallel Mechanism With Different Limb Arrangements
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
389
396
.10.1016/j.rcim.2010.08.007
4.
Sun
,
T.
,
Song
,
Y. M.
,
Dong
,
G.
, and
Lian
,
B. B.
,
2014
, “
Five-Axis Machining Parallel Tool Head
,” Chinese Patent No. ZL 201210094320.9.
5.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.10.1017/S0263574799001678
6.
Hosseini
,
M. A.
,
Daniali
,
H. M.
, and
Taghirad
,
H. D.
,
2011
, “
Dexterous Workspace Optimization of a Tricept Parallel Manipulator
,”
Adv. Rob.
,
25
(13-14), pp.
1697
1712
.10.1163/016918611X584640
7.
Sun
,
T.
,
Song
,
Y. M.
,
Li
,
Y. G.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
.10.1115/1.4001781
8.
Liu
,
H. T.
,
Chetwynd
,
D. G.
, and
Huang
,
T.
,
2011
, “
An Approach for Acceleration Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011013
.10.1115/1.4003271
9.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2007
, “
Kinematic Analysis of a 3-PRS Parallel Manipulator
,”
Rob. Comput.-Integr. Manuf.
,
23
(
4
), pp.
395
408
.10.1016/j.rcim.2006.04.007
10.
Sun
,
T.
,
Song
,
Y. M.
,
Li
,
Y. G.
, and
Liu
,
L. S.
,
2010
, “
Dimensional Synthesis of a 3-DOF Parallel Manipulator Based on Dimensionally Homogeneous Jacobian Matrix
,”
Sci. China: Technol. Sci.
,
53
(
1
), pp.
168
174
.10.1007/s11431-009-0375-y
11.
Wang
,
Y. Y.
,
Chetwynd
,
D. G.
,
Liu
,
H. T.
, and
Huang
,
T.
,
2009
, “
Stiffness Modeling of the Tricept Robot Using the Overall Jacobian Matrix
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021002
.10.1115/1.3046131
12.
Paul
,
R. P.
, and
Stevenson
,
C. N.
,
1983
, “
Kinematics of Robot Wrists
,”
Int. J. Rob. Res.
,
2
(
1
), pp.
31
38
.10.1177/027836498300200103
13.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanism
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.10.1177/027836498500400201
14.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.10.1115/1.2912772
15.
Gauthier
,
J. F.
,
Angles
,
J.
,
Nokleby
,
S. B.
, and
Morozov
,
A.
,
2008
, “
The Kinetostatic Conditioning of Two-Limb Schönflies Motion Generators
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011010
.10.1115/1.2960544
16.
Liu
,
H. T.
,
Huang
,
T.
,
Zhao
,
X. M.
,
Mei
,
J. P.
, and
Chetwynd
,
D. G.
,
2007
, “
Optimal Design of the Trivariant Robot to Achieve a Nearly Axial Symmetry of Kinematic Performance
,”
Mech. Mach. Theory
,
42
(
12
), pp.
1643
1652
.10.1016/j.mechmachtheory.2006.12.001
17.
Lipkin
,
H.
, and
Duffy
,
J.
,
1988
, “
Hybrid Twist and Wrench Control for a Robotic Manipulator
,”
ASME J. Mech. Des.
,
110
(
6
), pp.
138
144
.10.1115/1.3258928
18.
Doty
,
K. L.
,
Melchiorri
,
C.
,
Schwartz
,
E. M.
, and
Bonivento
,
C.
,
1995
, “
Robot Manipulability
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
462
468
.10.1109/70.388791
19.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,”
5th International Conference of Advanced Robot, Robots in Unstructured Environments
(91 ICAR)
, Pisa, Italy, June 19–22, Vol.
2
, pp.
1130
1135
.10.1109/ICAR.1991.240404
20.
Angeles
,
J.
,
2006
, “
Is There a Characteristic Length of a Rigid-Body Displacement
,”
Mech. Mach. Theory
,
41
(
8
), pp.
884
896
.10.1016/j.mechmachtheory.2006.03.010
21.
Khan
,
W. A.
, and
Angeles
,
J.
,
2006
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.10.1115/1.2120808
22.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.10.1016/j.mechmachtheory.2006.01.003
23.
Pond
,
G.
, and
Carretero
,
J. A.
,
2007
, “
Quantitative Dexterous Workspace Comparison of Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1388
1400
.10.1016/j.mechmachtheory.2006.10.004
24.
Ball
,
R. S.
,
1990
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
New York
.
25.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
Generalized Evaluation for the Transmission Performance of Mechanisms
,”
Mech. Mach. Theory
,
29
(
4
), pp.
607
618
.10.1016/0094-114X(94)90098-1
26.
Xie
,
F. G.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Rob. Comput.-Integr. Manuf.
,
28
(
3
), pp.
334
343
.10.1016/j.rcim.2011.10.003
27.
Wang
,
J. S.
,
Wu
,
C.
,
Liu
, and
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.10.1016/j.mechmachtheory.2010.05.001
28.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
,
1992
, “
Optimal Synthesis of Mechanisms Using Nonlinear Goal Programming Techniques
,”
Mech. Mach. Theory
,
27
(
5
), pp.
599
612
.10.1016/0094-114X(92)90048-M
29.
Cabrera
,
J. A.
,
Simon
,
A.
, and
Prado
,
M.
, “
Optimal Synthesis of Mechanisms With Genetic Algorithms
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1165
1177
.10.1016/S0094-114X(02)00051-4
30.
Stock
,
M.
, and
Miller
,
K.
,
2003
, “
Optimal Kinematic Design of Spatial Parallel Manipulators: Application to Linear Delta Robot
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
292
301
.10.1115/1.1563632
31.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of Trivariant-A Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
449
456
.10.1109/TRO.2004.840908
32.
Hao
,
F.
, and
Merlet
,
J. P.
,
2005
, “
Multi-Criteria Optimal Design of Parallel Manipulators Based on Interval Analysis
,”
Mech. Mach. Theory
,
40
(
2
), pp.
157
171
.10.1016/j.mechmachtheory.2004.07.002
33.
Haulin
,
E. N.
, and
Vinet
,
R.
,
2003
, “
Multiobjective Optimization of Hand Prosthesis Mechanisms
,”
Mech. Mach. Theory
,
38
(
1
), pp.
3
26
.10.1016/S0094-114X(02)00096-4
34.
Cabrera
,
J. A.
,
Nadal
,
F.
, and
Munoz
,
J. P.
,
2007
, “
Multiobjective Constrained Optimal Synthesis of Planar Mechanisms Using a New Evolutionary Algorithm
,”
Mech. Mach. Theory
,
42
(
7
), pp.
791
806
.10.1016/j.mechmachtheory.2006.07.004
35.
Gao
,
Z.
,
Zhang
,
D.
, and
Ge
,
Y. J.
,
2010
, “
Design Optimization of a Spatial Six Degree-of-Freedom Parallel Manipulator Based on Artificial Intelligence Approaches
,”
Rob. Comput.-Integr. Manuf.
,
26
(
2
), pp.
180
189
.10.1016/j.rcim.2009.07.002
36.
Deb
,
K.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
37.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
833
841
.10.1016/j.mechamachtheory.2011.01.00
You do not currently have access to this content.