This paper introduces two novel dexterity indices, namely, angularity and axiality, which are used to estimate the motion sensitivity of the mobile platform of a parallel manipulator undergoing a general motion involving translation and rotation. On the one hand, the angularity index can be used to measure the sensitivity of the mobile platform to change in rotation. On the other hand, the axiality index can be used to measure the sensitivity of the operation point (OP) of the mobile platform to change in translation. Since both indices were inspired by very fundamental concepts of classical kinematics (angular velocity vector and helicoidal velocity field), they offer a clear and simple physical insight, which is expected to be meaningful to the designer of parallel manipulators. Moreover, the proposed indices do not require obtaining a dimensionally homogeneous Jacobian matrix, nor do they depend on having similar types of actuators in each manipulator's leg. The details of the methodology are illustrated by considering a classical parallel manipulator.

References

References
1.
Gosselin
,
C. M.
,
1990
, “
Dexterity Indices for Planar and Spatial Robotic Manipulators
,”
IEEE International Conference on Robotics and Automation
, Cincinnati, OH, May 13–18, pp.
650
655
.10.1109/ROBOT.1990.126057
2.
Pittens
,
K. H.
, and
Podhorodeski
,
R. P.
,
1993
, “
A Family of Stewart Platforms With Optimal Dexterity
,”
J. Rob. Syst.
,
10
(
4
), pp.
463
479
.10.1002/rob.4620100405
3.
Bhattacharya
,
S.
,
Hatwal
,
H.
, and
Gosh
,
A.
,
1995
, “
On the Optimum Design of Stewart Platform Type Parallel Manipulators
,”
Robotica
,
13
(
1
), pp.
133
140
.10.1017/S026357470001763X
4.
Zanganeh
,
K. E.
, and
Angeles
,
J.
,
1997
, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Robot. Res.
,
16
(
2
), pp.
185
197
.10.1177/027836499701600205
5.
Tsai
,
K. Y.
, and
Huang
,
K. D.
,
1998
, “
The Manipulability and Transmissivity of Manipulators
,”
Int. J. Rob. Autom.
,
13
(
4
), pp.
132
136
.
6.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(1), pp.
199
206
.10.1115/1.2121740
7.
Pond
,
G.
, and
Carretero
,
J. A.
,
2007
, “
Quantitative Dexterous Workspace Comparison of Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(10), pp.
1388
1400
.10.1016/j.mechmachtheory.2006.10.004
8.
Kim
,
S. G.
, and
Ryu
,
J.
,
2003
, “
New Dimensionally Nonhomogeneous Jacobian Matrix Formulation by Three End-Effector Points for Optimal Design of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
19
(
4
), pp.
731
737
.10.1109/TRA.2003.814496
9.
Kong
,
M.
,
Zhang
,
Y.
,
Du
,
Z.
, and
Sun
,
L.
,
2007
, “
A Novel Approach to Deriving the Unit-Homogeneous Jacobian Matrices of Mechanisms
”,
IEEE International Conference on Mechatronics and Automation
, Harbin, China, August 5–8, pp.
3051
3055
.10.1109/ICMA.2007.4304047
10.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.10.1109/TRO.2009.2037252
11.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(1), pp.
150
156
.10.1109/TRO.2010.2082091
12.
Klein
,
C. A.
, and
Miklos
,
T. A.
,
1991
, “
Spatial Robotic Isotropy
,”
Int. J. Robot. Res.
,
10
(
4
), pp.
426
437
.10.1177/027836499101000410
13.
Mansouri
,
I.
, and
Ouali
,
M.
,
2010
, “
The Power Manipulability—A New Homogeneous Performance Index of Robot Manipulators
,”
Rob. Comput. Integr. Manuf.
,
27
(2), pp.
434
449
.10.1016/j.rcim.2010.09.004
14.
Fenton
,
R. G.
, and
Willgoss
,
R. A.
,
1990
, “
Comparison of Methods for Determining Screw Parameters of Infinitesimal Rigid Body Motion From Position and Velocity Data
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(4), pp.
711
716
.10.1115/1.2896199
15.
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms
,
Springer
,
New York
, p.
324
.
16.
Angeles
,
J.
,
1982
,
Spatial Kinematic Chains: Analysis, Synthesis, Optimization
,
Springer-Verlag
,
New York
, pp.
130
,
134
135
.
17.
Brand
,
L.
,
1947
,
Vector and Tensor Analysis
,
John Wiley & Sons
,
New York
, p.
34
.
18.
Schwartz
,
M.
,
Green
,
S.
, and
Rutledge
,
W. A.
,
1960
,
Vector Analysis With Applications to Geometry and Physics
,
Harper & Row
,
New York
, p.
17
.
19.
Phillips
,
J.
,
1984
,
Freedom in Machinery. Vol. 1: Introducing Screw Theory
,
Cambridge University Press
, Cambridge, UK, pp.
69
72
.
20.
Angeles
,
J.
,
1989
,
Rational Kinematics
,
Springer-Verlag
, New York, pp.
49
50
.
21.
Ginsberg
,
J.
,
2008
,
Engineering Dynamics
,
Cambridge University Press
, New York, pp.
175
176
.
22.
WordReference.com,
2013
,
Online Language Dictionaries
, http://www.wordreference.com/definition/angularity
23.
Huston
,
R. L.
,
1990
,
Multibody Dynamics
,
Butterworth-Heinemann
, Boston, MA, pp.
17
18
.
24.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
, New York, pp.
28
29
.
25.
Hunt
,
K. H.
,
1990
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
, New York, pp.
268
269
.
26.
Kane
,
T. R.
,
Likins
,
P. W.
, and
Levinson
,
D. A.
,
1983
,
Spacecraft Dynamics
,
McGraw-Hill
,
New York
, pp.
422
431
.
27.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nahon
,
M. A.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(1), pp.
17
24
.10.1115/1.533542
28.
Ghosal
,
A.
, and
Ravani
,
B.
,
2001
, “
A Differential-Geometric Analysis of Singularities of Point Trajectories of Serial and Parallel Manipulators
,”
ASME J. Mech. Des.
,
123
(1), pp.
80
89
.10.1115/1.1325008
29.
Nakamura
,
Y.
,
1991
,
Advanced Robotics: Redundancy and Optimization
,
Addison-Wesley Publishing Company
, pp.
17
.
30.
Strang
,
G.
,
1988
,
Linear Algebra and Its Applications
,
Harcourt Brace & Company
, Fort Worth, TX, pp.
50
331
.
31.
Gibbs
,
J. W.
,
1960
,
Vector Analysis
,
Dover Publications, Inc.
,
New York
, p.
76
.
You do not currently have access to this content.