Almost all walking robots are composed of two or more multi-degrees-of-freedom (DOFs) legs which give them a good ability to traverse obstacles. Nevertheless, their speed and efficiency when traversing rough terrains is, in most cases, arguably limited. Additionally, they have the disadvantage of a generally lower reliability. The design of robust and efficient 1-DOF leg is, on the other hand, a complex process. In this paper, a method to analyze and optimize 1-DOF robotic legs is proposed. The results of a virtual simulation are used in combination with some performance indices to optimize the geometric parameters of 1-DOF legs. Finally, the results of the simulation and the actual walking performance of a prototype using four legs with the computed optimal parameters are presented and compared with the simulator results. The validation of the simulation model and the optimization method proposed in this paper represents the main contribution of this work.

References

References
1.
Dwivedi
,
R.
,
Kandpal
,
N.
, and
Shukla
,
A.
,
2010
, “
Adaptive Suspension System
,”
2nd IEEE International Conference on Information and Financial Engineering
(
ICIFE
), Chongqing, China, September 17–19, pp.
694
697
.10.1109/ICIFE.2010.5609451
2.
Kilit
,
O.
, and
Yontar
,
A.
,
2009
, “
Stability of a New Mars Rover With Multi-Stage Bogie Mechanism
,”
4th International Conference on Recent Advances in Space Technologies
(
RAST’09
), Istanbul, Turkey, June 11–13, pp.
145
149
.10.1109/RAST.2009.5158185
3.
Loc
, V.-G
.
,
Koo
, I
. M.
,
Trong
,
T.
,
Kim
,
H. M.
,
Moon
,
H.
,
Park
,
S.
, and
Choi
,
H. R.
,
2010
, “
A Study on Traversability of Quadruped Robot in Rough Terrain
,”
International Conference on Control Automation and Systems (ICCAS)
, Gyeonggi-do, South Korea, October 27–30, pp.
1707
1711
.
4.
Remy
,
C. D.
,
Baur
,
O.
,
Latta
,
M.
,
Lauber
,
A.
,
Hutter
,
M.
,
Hoepflinger
,
M. A.
,
Pradalier
,
C.
, and
Siegwart
,
R.
,
2010
, “
Walking and Crawling With ALoF: A Robot for Autonomous Locomotion on Four Legs
,”
13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
(CLAWAR, 2010), Nagoya, Japan, August 31–September, pp.
264
268
.
5.
Amagata
,
Y.
,
Nakaura
,
S.
, and
Sampei
,
M.
,
2008
, “
The Running of Humanoid Robot on Uneven Terrain Utilizing Output Zeroing
,”
SICE Annual Conference
, Tokyo, Japan, August 20–22, pp.
2841
2846
.10.1109/SICE.2008.4655149
6.
Gibbesch
,
A.
, and
Schafer
,
B.
,
2005
, “
Multibody System Modeling and Simulation of Planetary Rover Mobility on Soft Terrain
,”
8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS 2005), Munich, Germany, September 5–8
.
7.
Gu
,
J.
,
Cao
,
Q.
, and
Huang
,
Y.
,
2008
, “
Rapid Traversability Assessment in 2.5d Grid-Based Map on Rough Terrain
,”
Int. J. Adv. Rob. Syst.
,
5
(
4
), pp.
389
394
.
8.
Li
,
W.
,
Huang
,
Y.
,
Cui
,
Y.
,
Dong
,
S.
, and
Wang
,
J.
,
2010
, “
Trafficability Analysis of Lunar Mare Terrain by Means of the Discrete Element Method for Wheeled Rover Locomotion
,”
J. Terramech.
,
47
(
3
), pp.
161
172
.10.1016/j.jterra.2009.09.002
9.
Palmer
,
L.
, and
Orin
,
D.
,
2007
, “
Quadrupedal Running at High Speed Over Uneven Terrain
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS2007
), San Diego, CA, October 29–November 2, pp.
303
308
.10.1109/IROS.2007.4399496
10.
Yokokohji
,
Y.
,
Chaen
,
S.
, and
Yoshikawa
,
T.
,
2004
, “
Evaluation of Traversability of Wheeled Mobile Robots on Uneven Terrains by Fractal Terrain Model
,”
IEEE International Conference on Robotics and Automation
(
ICRA’04
), New Orleans, LA, April 26–May 1, pp.
2183
2188
.10.1109/ROBOT.2004.1307386
11.
Deussen
,
O.
, and
Lintermann
,
B.
,
2005
, “
Modeling Terrain
,”
Digital Design of Nature: Computer Generated Plants and Organics
,
Springer
, Berlin, pp.
113
123
.10.1007/3-540-27104-X_7
12.
Ruella
,
C.
, and
Birglen
,
L.
,
2013
, “
Traversability Analysis of a Novel One-DOF Robotic Leg
,”
ASME
Paper No. DETC2013-12898.10.1115/DETC2013-12898
13.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
14.
Kajita
,
S.
, and
Espiau
,
B.
,
2008
, “
Legged Robots
,”
Handbook of Robotics
,
B.
Siciliano
and
O.
Khatib
, eds.,
Springer
,
Berlin
, pp.
361
389
.
15.
Hirose
,
S.
,
Fukuda
,
Y.
,
Yoneda
,
K.
,
Nagakubo
,
A.
,
Tsukagoshi
,
H.
,
Arikawa
,
K.
,
Endo
,
G.
,
Doi
,
T.
, and
Hodoshima
,
R.
,
2009
, “
Quadruped Walking Robots at Tokyo Institute of Technology
,”
IEEE Rob. Autom. Mag.
,
16
(
2
), pp.
104
114
.10.1109/MRA.2009.932524
16.
Whitley
,
D.
,
1994
, “
A Genetic Algorithm Tutorial,” Computer Science Department
, Colorado State University, Fort Collins, CO 80523.
17.
Artobolevsky
,
I.
,
1989
,
Mechanisms in Modern Engineering Design
, Vol.
I–III
,
MIR Publisher
,
Moscow
.
18.
Raibert
,
M. H.
,
1986
, “
Legged robots
,”
Commun. ACM
,
29
(
6
), pp.
499
514
.10.1145/5948.5950
19.
Tavolieri
,
C.
,
Ottaviano
,
E.
,
Ceccarelli
,
M.
, and
Rienzo
,
A. D.
,
2006
, “
Analysis and Design of a 1-DOF Leg for Walking Machines
,”
15th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD)
, Balatonfured, Hungary, June 15–17.
20.
Shieh
,
W.
,
Tasai
,
L.
, and
Azarm
,
U.
,
1997
, “
Design and Optimization of a One-Degree-of-Freedom Six-Bar Leg Mechanism for a Walking Machine
,”
J. Rob. Syst.
,
14
(
12
), pp.
871
880
.10.1002/(SICI)1097-4563(199712)14:12<871::AID-ROB4>3.0.CO;2-R
21.
Kendry
,
J. M.
,
2008
, “
Design and Analysis of a Class of Planar Biped Robots Mechanically Coordinated by a Single Degree of Freedom
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102302
.10.1115/1.2965609
22.
Tavolieri
,
C.
,
Ottaviano
,
E.
,
Ceccarelli
,
M.
, and
Rienzo
,
A. D.
,
2007
, “
A Design of a New Leg-Wheel Walking Robot
,”
Mediterranean Conference on Control and Automation
(
MED’07
), Athens, Greece, June 27–29.10.1109/MED.2007.4433829
23.
Ottaviano
,
E.
,
Lanni
,
C.
, and
Ceccarelli
,
M.
,
2004
, “
Numerical and Experimental Analysis of a Pantograph-Leg With a Fully-Rotative Actuating Mechanism
,”
11th World Congress in Mechanism and Machine Science
, Tianjin, China, August 18–21, pp.
1537
1541
.
24.
Fukuoka
,
Y.
, and
Kimura
,
H.
,
2009
, “
Dynamic Locomotion of a Biomorphic Quadruped Tekken Robot Using Various Gaits: Walk, Trot, Free-Gait and Bound
,”
Appl. Bionics Biomech.
,
6
(
1
), pp.
63
71
.10.1080/11762320902734208
25.
Raibert
,
M.
,
Blankespoor
,
K.
,
Nelson
,
G.
, and
Playter
,
R.
,
2008
, “
Bigdog, the Rough-Terrain Quadruped Robot
,”
17th World Congress on the International Federation of Automatic Control, Seoul, Korea, July 6–11
.
You do not currently have access to this content.