This paper investigates an independent suspension with invariable alignment parameters by using flexible links of anisotropic elasticity. It focuses on the synthesis of elasticity of compliant flat links and establishes the mapping from the internal forces during jounce and rebound to the perturbation of the alignment parameters of the knuckle. The equivalent substitution of a flexible link to the infinite-R kinematic chain is first discussed by investigating the free motion and constraint of planar R-type kinematic chains. The rigid guidance capability of the suspension is then discussed from the viewpoint of perturbations of alignment parameters via investigating the lateral deflections of the anisotropic flexible links. At last the rib strengthened double level links on each side of the knuckle are proposed for engineering applications. Numerical simulations and model test show that this kind of suspension can provide very good alignment for the wheel.

References

References
1.
Smith
,
W. A.
, and
Zhang
,
N.
,
2010
, “
Hydraulically Interconnected Vehicle Suspension: Optimization and Sensitivity Analysis
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
11
), pp.
1335
1355
.10.1243/09544070JAUTO1422
2.
Majewski
,
T.
,
2010
, “
The Properties of a Dynamic Eliminator for Vehicle Vibrations
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1449
1461
.10.1016/j.mechmachtheory.2010.05.003
3.
Chondros
,
T. G.
,
Michalos
,
G.
,
Michaelides
,
P.
, and
Fainekos
,
E.
,
2007
, “
An Approximate Method for the Evaluation of the Roll Stiffness of Road Tankers
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
11
), pp.
1499
1512
.10.1243/09544070JAUTO446
4.
Mántaras
,
D. A.
,
Pablo
,
L.
, and
Carlos
, V
.
,
2004
, “
Development and Validation of a Three-Dimensional Kinematic Model for the McPherson Steering and Suspension Mechanisms
,”
Mech. Mach. Theory
,
39
(
6
), pp.
603
619
.10.1016/j.mechmachtheory.2003.12.006
5.
Kang
,
J.
,
2008
, “
Forced Vibration Analysis for Dynamic Coupling of Finite-Element Spring-Reduced Suspension System
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
3
), pp.
349
356
.10.1243/09544062JMES906
6.
Potter
,
T. E. C.
,
Cebon
,
D.
, and
Cole
,
D. J.
,
1997
, “
Assessing Road Friendliness: A Review
,”
Proc. Inst. Mech. Eng., Part D
,
211
(
6
), pp.
455
475
.10.1243/0954407971526588
7.
Costanzi
,
M.
, and
Cebon
,
D.
,
2007
, “
An Investigation of the Effects of Lorry Suspension Performance on Road Maintenance Costs
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
11
), pp.
1265
1277
.10.1243/09544062JMES639
8.
Cao
,
D.
,
Rakheja
,
S.
, and
Su
,
C.-Y.
,
2008
, “
Pitch Plane Analysis of a Twin-Gas-Chamber Strut Suspension
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
8
), pp.
1313
1335
.10.1243/09544070JAUTO779
9.
Gillespie
,
T. D.
,
1992
,
Fundamentals of Vehicle Dynamics
,
SAE International
,
Warrendale, PA
.
10.
Gillespie
,
T. D.
,
1985
, “
Heavy Truck Ride
,”
SAE
Technical Paper No. 850001.10.4271/850001
11.
Simionescu
,
P. A.
, and
Beale
,
D.
,
2002
, “
Synthesis and Analysis of the Five-Link Rear Suspension System Used in Automobiles
,”
Mech. Mach. Theory
,
37
(
9
), pp.
815
832
.10.1016/S0094-114X(02)00037-X
12.
Knapczyk
,
J.
, and
Maniowski
,
M.
,
2006
, “
Stiffness Synthesis of a Five-Rod Suspension for Given Load-Displacement Characteristics
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
7
), pp.
705
716
.10.1243/09544070JAUTO63
13.
Raghavan
,
M.
,
1996
, “
Number and Dimensional Synthesis of Independent Suspension Mechanisms
,”
Mech. Mach. Theory
,
31
(
8
), pp.
999
1195
.10.1016/0094-114X(96)84605-2
14.
Nasada
,
M.
,
2006
, “
Effect on Compliance and Alignment Variation With Respect to Stiffness of Knuckle and Shock Absorber in a McPherson Strut Suspension
,”
Veh. Syst. Dyn.
,
44
(S1), pp.
171
180
.10.1080/00423110600869958
15.
Papegay
,
Y. A.
,
Merlet
,
J.-P.
, and
Daney
,
D.
,
2005
, “
Exact Kinematics Analysis of Car's Suspension Mechanisms Using Symbolic Computation and Interval Analysis
,”
Mech. Mach. Theory
,
40
(
4
), pp.
395
413
.10.1016/j.mechmachtheory.2003.07.003
16.
Meissonnier
,
J.
,
Metz
,
P.
,
Fauroux
,
J.-C.
,
Gogu
,
G.
, and
Montezin
,
C.
,
2006
, “
Iterative Identification of Stiffness Parameters in a Car Suspension Elastokinematic Model
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
11
), pp.
1477
1489
.10.1243/09544070JAUTO327
17.
Kang
,
D.-O.
,
Heo
,
S.-J.
, and
Kim
,
M.-S.
,
2010
, “
Robust Design Optimization of the McPherson Suspension System With Consideration of a Bush Compliance Uncertainty
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
6
), pp.
705
716
.10.1243/09544070JAUTO1228
18.
Habibi
,
H.
,
Shirazi
,
K. H.
, and
Shishesaz
,
M.
,
2008
, “
Roll Steer Minimization of McPherson-Strut Suspension System Using Genetic Algorithm Method
,”
Mech. Mach. Theory
,
43
(
1
), pp.
57
67
.10.1016/j.mechmachtheory.2007.01.004
19.
Hoyle
,
J. B.
,
2004
, “
Modeling the Static Stiffness and Dynamic Frequency Response Characteristics of a Leaf Spring Truck Suspension
,”
Proc. Inst. Mech. Eng., Part D
,
218
(
3
), pp.
259
278
.10.1243/095440704322955795
20.
Zhao
,
J.-S.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Zhao
,
S.
,
2009
, “
Synthesis of a Rear Wheel Suspension Mechanism With Pure Rectilinear Motion
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101007
.10.1115/1.3179153
21.
Zhao
,
J.-S.
,
Chu
,
F.
, and
Feng
,
Z.-J.
,
2008
, “
Synthesis of Rectilinear Motion Generating Spatial Mechanism With Application to Automotive Suspension
,”
ASME J. Mech. Des.
,
130
(
6
), p.
065001
.10.1115/1.2901157
22.
Zhao
,
J.-S.
,
Zhou
,
K.
, and
Feng
,
Z.-J.
,
2004
, “
A Theory of Degrees of Freedom for Mechanisms
,”
Mech. Mach. Theory
,
39
(
6
), pp.
621
643
.10.1016/j.mechmachtheory.2003.12.005
23.
Zhao
,
J.
,
Feng
,
Z.
,
Chu
,
F.
, and
Ma
,
N.
,
2014
,
Advanced Theory of Constraint and Motion Analysis for Robot Mechanisms
,
Elsevier
,
Oxford
, UK.
24.
Zhao
,
J.
,
Feng
,
Z.
,
Ma
,
N.
, and
Chu
,
F.
,
2014
,
Design of Special Planar Linkages
,
Springer
,
Heidelberg
, Germany.
You do not currently have access to this content.