The objective of this study is to present an analytical procedure for analysis of a compliant tensegrity mechanism focusing on its stiffness and dynamic characteristics. The screw calculus is used to derive the static equations and stiffness matrix of a full degree-of-freedom tensegrity mechanism, and the equations of motion are derived based on the principle of virtual work. Finally, some numerical examples are solved for the inverse dynamics of the mechanism.

References

References
1.
Fuller
,
R. B.
,
1962
, “
Tensile-Integrity Structures
,” U.S. Patent No. 3,063,521.
2.
Pugh
,
A.
,
1976
,
An Introduction to Tensegrity
,
University of California Press
,
Berkeley, CA
.
3.
Motro
,
R.
,
2011
, “
Structural Morphology of Tensegrity Systems
,”
Meccanica
,
46
(1), pp. 27–40.10.1007/s11012-010-9379-8
4.
Hanaor
,
A.
,
1994
, “
Geometrically Rigid Double-Layer Tensegrity Grids
,”
Int. J. Space Struct.
,
9
(
4
), pp.
227
238
.
5.
Bayat
,
J.
, and
Crane
,
C. D.
, III
,
2007
, “
Closed-Form Equilibrium Analysis of Planar Tensegrity Structures
,”
31st Mechanisms and Robotics Conference, Parts A and B
, Las Vegas, NV, Vol.
8
, pp.
13
23
.
6.
Arsenault
,
M.
, and
Gosselin
,
C.
,
2006
, “
Kinematic, Static and Dynamic Analysis of a Planar 2-DoF Tensegrity Mechanism
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1072
1089
.10.1016/j.mechmachtheory.2005.10.014
7.
Chen
,
S.
, and
Arsenault
,
M.
,
2012
, “
Analytical Computation of the Actuator and Cartesian Workspace Boundaries for a Planar 2-Degree-of-Freedom Translational Tensegrity Mechanism
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011010
.10.1115/1.4005335
8.
Crane
,
C. D.
,
Correa
,
J. C.
, and
Duffy
,
J.
,
2005
, “
Static Analysis of Tensegrity Structures
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
257
268
.10.1115/1.1804194
9.
Arsenault
,
M.
, and
Gosselin
,
C.
,
2006
, “
Kinematic, Static, and Dynamic Analysis of a Spatial Three-Degree-of-Freedom Tensegrity Mechanism
,”
ASME J. Mech. Des.
,
128
, pp.
1061
1069
.10.1115/1.2218881
10.
Arsenault
,
M.
, and
Gosselin
,
C.
,
2008
, “
Kinematic and Static Analysis of 3-PUPS Spatial Tensegrity Mechanism
,”
Mech. Mach. Theory
,
44
, pp.
162
179
.10.1016/j.mechmachtheory.2008.02.005
11.
Mirats-Tur
,
J. M.
, and
Camps
,
J.
,
2011
, “
A 3 DOF Actuated Robot
,”
IEEE Rob. Autom. Mag.
,
18
(
3
), pp.
96
103
.10.1109/MRA.2011.940991
12.
Shekarforoush
,
S. M. M.
,
Eghtesad
,
M.
, and
Farid
,
M.
,
2013
, “
Kinematic and Static Analyses of Statically Balanced Spatial Tensegrity Mechanism With Active Compliant Components
,”
J. Intell. Robot. Syst.
,
71
(
3–4
), pp.
287
302
.10.1007/s10846-012-9784-4
13.
Nouri Rahmat Abadi
,
B.
,
Farid
,
M.
, and
Mahzoon
,
M.
,
2014
, “
Introducing and Analyzing a Novel Three-Degree-of-Freedom Spatial Tensegrity Mechanism
,”
J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021017
.10.1115/1.4025894
14.
Burkhardt
,
R. W.
,
2007
,
A Practical Guide to Tensegrity Design
,
2nd ed.
, http://www.trip.net/~bobwb/ts/tenseg/book/cover.html
15.
Knight
,
B.
,
Zhang
,
Y.
,
Duffy
,
J.
, and
Crane
,
C.
,
2000
, “
On the Line Geometry of a Class of Tensegrity Structures
,”
Proceedings of Sir Robert Stawell Ball Symposium
, University of Cambridge, UK.
16.
Marshall
,
M. Q.
,
2003
, “
Analysis of Tensegrity-Based Parallel Platform Devices
,” M.S. thesis, Center for Intelligent Machine and Robotics, Department of Mechanical and Aerospace Engineering, University of Florida, FL.
17.
Zhang
,
D.
,
2010
,
Parallel Robotic Machine Tools
,
Springer
,
New York
.
18.
Sultan
,
C.
, and
Skelton
,
R.
,
2004
, “
A Force and Torque Tensegrity Sensor
,”
Sens. Actuators, A
,
112
(
2–3
), pp.
220
231
.10.1016/j.sna.2004.01.039
19.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
New York
.
20.
Baruh
,
H.
,
1999
,
Analytical Dynamics
,
McGraw-Hill, International Edition
,
Singapore
.
21.
Shabana
,
A. A.
,
2001
,
Computational Dynamics
,
John Wiley & Sons, Inc.
,
New York
.
You do not currently have access to this content.