A contact-aided compliant mechanism (CCM) called a compliant spine (CS) is presented in this paper. It is flexible when bending in one direction and stiff when bending in the opposite direction, giving it a nonlinear bending stiffness. The fundamental element of this mechanism is a compliant joint (CJ), which consists of a compliant hinge (CH) and contact surfaces. The design of the compliant joint and the number of compliant joints in a compliant spine determine its stiffness. This paper presents the design and optimization of such a compliant spine. A multi-objective optimization problem with three objectives is formulated in order to perform the design optimization of the compliant spine. The goal of the optimization is to minimize the peak stress and mass while maximizing the deflection, subject to geometric and other constraints. Flapping wing unmanned air vehicles, also known as ornithopters, are used as a case study in this paper to test the accuracy of the design optimization procedure and to prove the efficacy of the compliant spine design. The optimal compliant spine designs obtained from the optimization procedure are fabricated, integrated into the ornithopter's wing leading edge spar, and flight tested. Results from the flight tests prove the ability of the compliant spine to produce an asymmetry in the ornithopter's wing kinematics during the up and down strokes.

References

References
1.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2002
, “
Contact-Aided Compliant Mechanisms: Concept and Preliminaries
,”
ASME
Paper No. DETC2002/MECH-34211.10.1115/DETC2002/MECH-34211
2.
Tummala
,
Y.
,
Wissa
,
A.
,
Frecker
,
M.
, and
Hubbard
,
J. E.
, Jr.
,
2010
, “
Design of a Passively Morphing Ornithopter Wing Using a Novel Compliant Spine
,” Proceedings of Smart Materials,
ASME
Paper No. SMASIS2010-363710.1115/SMASIS2010-3637.
3.
Tummala
,
Y.
,
Wissa
,
A.
,
Frecker
,
M.
, and
Hubbard
,
J. E.
, Jr.
,
2011
, “
Design Optimization of a Compliant Spine for Dynamic Applications
,”
ASME
Paper No. SMASIS2011-520710.1115/SMASIS2011-5207.
4.
Wissa
,
A.
,
Tummala
,
Y.
,
Hubbard
,
J. E.
, Jr.
, and
Frecker
,
M.
,
2012
, “
Passively Morphing Ornithopter Wings Using a Novel Compliant Spine: Design and Testing
,”
Smart Mater. Struct.
,
21
(
9
), p.
094028
.10.1088/0964-1726/21/9/094028
5.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G.
,
2008
, “
Contact-Aided Compliant Mechanisms for Morphing Aircraft Skin
,”
Proc. SPIE
,
6926
, p. 69260C10.1117/12.773599.
6.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
,
2012
, “
Two-Step Design of Multicontact-Aided Cellular Compliant Mechanisms for Stress Relief
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121001
.10.1115/1.4007694
7.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2004
, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
667
672
.10.1115/1.1759360
8.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2007
, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(12), pp.
2564
2605
.10.1002/nme.1861
9.
Reddy
,
B. V. S. N.
,
Naik
,
S. V.
, and
Saxena
,
A.
,
2012
, “
Systematic Synthesis of Large Displacement Contact-Aided Monolithic Compliant Mechanisms
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011007
.10.1115/1.4005326
10.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G. A.
,
2009
, “
Stress Relief in Contact-Aided Compliant Cellular Mechanisms
,”
ASME J. Mech. Des.
,
131
(9), p.
091009
.10.1115/1.3165778
11.
Cirone
,
S. A.
,
Hayes
,
G. R.
,
Babcox
,
B. L.
,
Frecker
,
M.
,
Adair
,
J. H.
, and
Lesieutre
,
G. A.
,
2012
, “
Design of Contact-Aided Compliant Cellular Mechanisms With Curved Walls
,”
J. Intell. Mater. Syst. Struct.
,
23
(
16
), pp.
1773
1785
.10.1177/1045389X12453962
12.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Bowden
,
A. E.
,
2008
, “
A Flexure-Based Bi-Axial Contact-Aided Compliant Mechanism for Spinal Arthroplasty
,”
ASME
Paper No. DETC2008-5012110.1115/DETC2008-50121.
13.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.10.1016/j.mechmachtheory.2008.11.013
14.
Cannon
,
J. R.
, and
Howell
,
L. L.
,
2005
, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1273
1293
.10.1016/j.mechmachtheory.2005.01.011
15.
Wissa
,
A. A.
,
Tummala
,
Y.
,
Hubbard
,
J. E.
, Jr.
, and
Frecker
,
M. I.
,
2012
, “
Passively Morphing Ornithopter Wings Constructed Using a Novel Compliant Spine: Design and Testing
,”
Smart Mater. Struct.
,
21
(
9
), p.
094028
.10.1088/0964-1726/21/9/094028
16.
Brown
,
R. H. J.
,
1953
, “
The Flight of Birds. 2. Wing Function in Relation to Flight Speed
,”
J. Exp. Biol.
,
30
(
1
), pp.
90
103
.
17.
Keennon
,
M.
,
Klingebiel
,
K.
,
Won
,
H.
, and
Andriukov
,
A.
,
2012
, “
Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,”
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Nashville, TN. January 9–12,
AIAA
Paper No. 2012-0588.10.2514/6.2012-588
18.
DuPont,
2011
, “Delrin: Acetal Resin,” DuPont, Wilmington, DE, http://plastics.dupont.com/plastics/pdflit/americas/delrin/230323c.pdf
19.
Olympio
,
K. R.
,
2006
, “
Design of a Passive Flexible Skin for Morphing Aircraft Structures
,” M.S. thesis, The Pennsylvania State University, University Park, PA.
20.
Zhou
,
A.
,
Qu
,
Bo-Yang
,
Li
,
H.
,
Zhao
,
Shi-Zheng
,
Suganthan
,
P. N.
, and
Zhang
,
Q.
,
2011
, “
Multiobjective Evolutionary Algorithms: A Survey of the State of the Art
,”
Swarm Evol. Comput.
,
1
(1), pp.
32
49
.10.1016/j.swevo.2011.03.001
21.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
22.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
John Wiley & Sons
,
Chichester, New York
.
23.
Deb
,
K.
, and
Jain
,
S.
,
2002
, “
Running Performance Metrics for Evolutionary Multi-Objective Optimizations
,”
4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL'02)
, Singapore, November 18–22, pp.
13
20
.
24.
Wissa
,
A.
,
Tummala
,
Y.
,
Hubbard
,
J. E.
, Jr.
, and
Frecker
,
M.
,
2011
, “
Testing of Novel Compliant Spines for Passive Wing Morphing
,”
ASME
Paper No. SMASIS2011-519810.1115/SMASIS2011-5198
25.
Wissa
,
A.
,
Guerreiro
,
N.
,
Grauer
,
J.
,
Hubbard
,
J. E.
, Jr.
,
Altenbuchner
,
C.
,
Tummala
,
Y.
,
Frecker
,
M.
, and
Roberts
,
R.
,
2013
, “
Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters
,”
21st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Boston, MA, April 8–11.10.2514/6.2013-1516
You do not currently have access to this content.