This paper presents a design procedure for six-bar linkages that use eight accuracy points to approximate a specified input–output function. In the kinematic synthesis of linkages, this is known as the synthesis of a function generator to perform mechanical computation. Our formulation uses isotropic coordinates to define the loop equations of the Watt II, Stephenson II, and Stephenson III six-bar linkages. The result is 22 polynomial equations in 22 unknowns that are solved using the polynomial homotopy software Bertini. The bilinear structure of the system yields a polynomial degree of 705,432. Our first run of Bertini generated 92,736 nonsingular solutions, which were used as the basis of a parameter homotopy solution. The algorithm was tested on the design of the Watt II logarithmic function generator patented by Svoboda in 1944. Our algorithm yielded his linkage and 64 others in 129 min of parallel computation on a Mac Pro with 12 × 2.93 GHz processors. Three additional examples are provided as well.

References

References
1.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
2.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2007
, “
Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1185
1190
.10.1115/1.2771575
3.
Plecnik
,
M.
, and
McCarthy
,
J. M.
,
2011
, “
Five Position Synthesis of a Slider-Crank Function Generator
,”
ASME
Paper No. DETC2011-47581.10.1115/DETC2011-47581
4.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2012
, “
Unified Synthesis of a Planar Four-Bar Mechanism for Function Generation Using a Spring-Connected Arbitrarily Sized Block Model
,”
Mech. Mach. Theory
,
49
, pp.
141
156
.10.1016/j.mechmachtheory.2011.10.013
5.
Svoboda
,
A.
,
1948
,
Computing Mechanisms and Linkages
,
McGraw-Hill
,
New York
.
6.
Svoboda
,
A.
,
1944
, “
Mechanism for Use in Computing Apparatus
,” U. S. Patent No. 2,340,350.
7.
Hwang
,
W. M.
, and
Chen
,
Y. J.
,
2010
, “
Defect-Free Synthesis of Stephenson-II Function Generators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041012
.10.1115/1.4001728
8.
Freudenstein
,
F.
,
1954
, “
An Analytical Approach to the Design of Four-Link Mechanisms
,”
Trans. ASME
,
76
(3), pp.
483
492
.
9.
McLarnan
,
C. W.
,
1963
, “
Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,”
ASME J. Manuf. Sci. Eng.
,
85
(
1
), pp.
5
10
.10.1115/1.3667588
10.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
,
1994
, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1122
1131
.10.1115/1.2919496
11.
Sancibrian
,
R.
,
2011
, “
Improved GRG Method for the Optimal Synthesis of Linkages in Function Generation Problems
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1350
1375
.10.1016/j.mechmachtheory.2011.05.011
12.
Wampler
,
C. W.
,
Sommese
,
A. J.
, and
Morgan
,
A. P.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
.10.1115/1.2916909
13.
Wampler
,
C. W.
,
1996
, “
Isotropic Coordinates, Circularity, and Bezout Numbers: Planar Kinematics From a New Perspective
,”
ASME Design Engineering Technical Conferences
, Irvine, CA, August 18–22, Paper No. DETC/MECH-1210.
14.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Singapore
.
15.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
2001
,
Mechanism Design: Analysis and Synthesis
,
Prentice Hall
,
Upper Saddle River, NJ
.
16.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1989
, “
Coefficient-Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
29
(
2
), pp.
123
160
.10.1016/0096-3003(89)90099-4
17.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1987
, “
A Homotopy for Solving General Polynomial Systems That Respects m-Homogeneous Structures
,”
Appl. Math. Comput.
,
24
(
2
), pp.
101
113
.10.1016/0096-3003(87)90063-4
18.
Su
,
H.
,
McCarthy
,
J. M.
,
Sosonkina
,
M.
, and
Watson
,
L. T.
,
2006
, “
Algorithm 857: POLSYS_GLP—A Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations
,”
ACM Trans. Math. Software
,
32
(
4
), pp.
561
579
.10.1145/1186785.1186789
19.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
2nd ed.
,
Springer-Verlag
, New York.
20.
Verschelde
,
J.
,
1999
, “
Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Software
,
25
(
2
), pp.
251
276
.10.1145/317275.317286
21.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.10.1115/1.2919181
22.
Larochelle
,
P. R.
,
2000
, “
Circuit and Branch Rectification of the Spatial 4C Mechanism
,”
ASME Design Engineering Technical Conferences
, Baltimore, MD, September 10–13, ASME Paper No. DETC2000/MECH-14053.
23.
Myszka
,
D. H.
,
Murray
,
A. P.
, and
Wampler
,
C. W.
,
2012
, “
Mechanism Branches, Turning Curves, and Critical Points
,”
ASME
Paper No. DETC2012-70277.10.1115/DETC2012-70277
You do not currently have access to this content.