Drawing mainly on the concepts of dual space and dual basis in linear algebra and on existing screw theory, this paper presents a novel and systematic approach for the force/motion transmissibility analysis of 6DOF parallel mechanisms. By taking the reciprocal product of a wrench on a twist as a linear functional, the property exhibited by the dual basis allows the formulation of the force/motion transmissibility between the joint space and operation space in an accurate and concise manner. The consistency between the force/motion transmissibility and the minimum singular value of the Jacobian for singularity identification is rigorously proved. This leads to the development of a set of homogeneously dimensionless local and global transmission indices for measuring the closeness to singular configurations as well as for kinematic performance evaluation over a given workspace. A Stewart platform is employed an exemplar to illustrate the effectiveness of the approach.

References

References
1.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.10.1115/1.2121740
2.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,”
Proceedings of the Fifth International Conference on Advanced Robotics
, pp.
1130
1135
.
3.
Tandirci
,
M.
,
Angeles
,
J.
, and
Ranjbaran
,
F.
,
1992
, “
The Characteristic Point and the Characteristic Length of Robotic Manipulators
,”
Proceedings of ASME 22nd Biennial Conference Robotics, Spatial Mechanisms and Mechanical System
, Scotsdale, AZ, Vol.
45
, pp.
203
208
.
4.
Angeles
,
J.
,
2006
, “
Is There a Characteristic Length of a Rigid-Body Displacement
,”
Mech. Mach. Theory
,
41
(
8
), pp.
884
896
.10.1016/j.mechmachtheory.2006.03.010
5.
Khan
,
W. A.
, and
Angeles
,
J.
,
2006
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.10.1115/1.2120808
6.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.10.1016/j.mechmachtheory.2006.01.003
7.
Pond
,
G.
, and
Carretero
,
J. A.
,
2007
, “
Quantitative Dexterous Workspace Comparison of Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1388
1400
.10.1016/j.mechmachtheory.2006.10.004
8.
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
150
156
.10.1109/TRO.2010.2082091
9.
Ball
,
R. S.
,
1990
,
A Treatise on the Theory of Screws
,
Cambridge University
,
Oxford
, UK.
10.
Yuan
,
M. S. C.
,
Freudenstwin
,
F.
, and
Woo
,
L. S.
,
1971
, “
Kinematic Analysis of Spatial Mechanism by Means of Screw Coordinates. Part 2-Analysis of Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
91
(
1
), pp.
67
73
.10.1115/1.3427919
11.
Sutherland
,
G.
, and
Roth
,
B.
,
1973
, “
A Transmission Index for Spatial Mechanisms
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
589
597
.10.1115/1.3438195
12.
Tsai
,
M. J.
, and
Lee
,
H. W.
,
1994
, “
Generalized Evaluation for the Transmission Performance of Mechanisms
,”
Mech. Mach. Theory
,
29
(
4
), pp.
607
618
.10.1016/0094-114X(94)90098-1
13.
Chen
,
C.
, and
Angeles
,
J.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.10.1016/j.mechmachtheory.2006.08.001
14.
Takeda
,
Y.
, and
Funabashi
,
H.
,
2001
, “
A Transmission Index for in–Parallel Wire–Driven Mechanisms
,”
JSME Int. J. Ser. C
,
44
(
1
), pp.
180
187
.10.1299/jsmec.44.180
15.
Chang
,
W. T.
,
Lin
,
C. C.
, and
Lee
,
J. J.
,
2003
, “
Force Transmissibility Performance of Parallel Manipulators
,”
J. Rob. Syst.
,
20
(
11
), pp.
659
670
.10.1002/rob.10115
16.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.10.1016/j.mechmachtheory.2010.05.001
17.
Liu
,
X. J.
,
Wu
,
C.
, and
Wang
,
J. S.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.10.1115/1.4007004
18.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.10.1016/j.mechmachtheory.2011.01.009
19.
Hogben
,
L.
,
2007
,
Handbook of Linear Algebra
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
20.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms, Springer Tracts in Advanced Robotics
.
Springer-Verlag
,
Berlin
.
21.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University
,
Oxford
.
22.
Joshi
,
S.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.10.1115/1.1469549
23.
Huang
,
T.
,
Wang
,
J. S.
,
Gosselin
,
M. C.
, and
Whitehouse
,
D. J.
,
1999
, “
Determination of Closed Form Solution to the 2D-Orientation Workspace of Gough–Stewart Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
15
(
6
), pp.
1121
1125
.10.1109/70.817675
24.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley-Interscience Publication
,
New York
.
25.
Huang
,
Z.
,
Chen
,
L. H.
, and
Li
,
Y. W.
,
2003
, “
The Singularity Principle and Property of Stewart Parallel Manipulator
,”
J. Rob. Syst.
,
20
(
4
), pp.
163
176
.10.1002/rob.10078
26.
Hunt
,
K. H.
,
1983
, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech. Des.
,
105
(
4
), pp.
705
712
.
27.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform–Based Manipulator: General Theory and Practical Construction
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
157
181
.10.1177/027836498600500216
You do not currently have access to this content.