Proposed in this paper is a general methodology applicable to the synthesis of spherical motion generators in the presence of an incomplete set of finitely separated attitudes. The spherical rigid-body guidance problem in the realm of four-bar linkage synthesis can be solved exactly for up to five prescribed attitudes of the coupler link, and hence, any number of attitudes smaller than five is considered incomplete in this paper. The attitudes completing the set are determined to produce a linkage whose performance is robust against variations in the unprescribed attitudes. Robustness is needed in this context to overcome the presence of uncertainty due to the selection of the unspecified attitudes, that many a time are specified implicitly by the designer upon choosing, for example, the location of the fixed joints of the dyads. A theoretical framework for model-based robust engineering design is thus, recalled, and a methodology for the robust synthesis of spherical four-bar linkages is laid down. An example is included here to concretize the concepts and illustrate the application of the proposed methodology.

References

References
1.
Tsai
,
L.
, and
Roth
,
B.
,
1972
, “
Design of Dyads With Helical, Cylindrical, Spherical, Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
7
(
1
), pp.
85
102
.10.1016/0094-114X(72)90019-5
2.
Chiang
,
C.
,
1988
,
Kinematics of Spherical Mechanisms
,
Cambridge University Press
,
New York
.
3.
McCarthy
,
J.
, and
Soh
,
G.
,
2010
,
Geometric Design of Linkages
,
2nd ed.
,
Springer-Verlag
,
New York
.
4.
Bodduluri
,
R.
, and
McCarthy
,
J.
,
1992
, “
Finite Position Synthesis Using the Image Curve of a Spherical Four-Bar Motion
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
55
60
.10.1115/1.2916925
5.
Larochelle
,
P.
, and
Tse
,
D.
,
2000
, “
Approximating Spatial Locations With Spherical Orientations for Spherical Mechanism Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
457
463
.10.1115/1.1289139
6.
Brunnthaler
,
K.
,
Schröcher
,
H.
, and
Husty
,
M.
,
2006
, “
Synthesis of Spherical Four-Bar Mechanisms Using Spherical Kinematic Mapping
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Roth
, eds.,
Springer
,
The Netherlands
, pp.
377
384
.
7.
Ketchel
,
J.
, and
Larochelle
,
P.
,
2007
, “
Computer-Aided Manufacturing of Spherical Mechanisms
,”
Mech. Mach. Theory
,
42
(
4
), pp.
131
146
.10.1016/j.mechmachtheory.2006.09.007
8.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publications
,
New York
.
9.
Suh
,
C.
, and
Radcliffe
,
C.
,
1978
,
Kinematics and Mechanisms Design
,
John Wiley & Sons
,
New York
.
10.
Phadke
,
M.
,
1989
,
Quality Engineering Using Robust Design
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
11.
Wu
,
Y.
, and
Wu
,
A.
,
2000
,
Taguchi Methods for Robust Design
,
ASME Press
,
New York
.
12.
Tsui
,
K.
,
1992
, “
An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design
,”
IIE Trans.
,
24
(
5
), pp.
44
57
.10.1080/07408179208964244
13.
Nair
,
N.
,
1992
, “
Taguchi's Parameter Design: A Panel Discusion
,”
Technometrics
,
34
(
1
), pp.
127
161
.10.1080/00401706.1992.10484904
14.
Al-Widyan
,
K.
, and
Angeles
,
J.
,
2005
, “
A Model-Based Formulation of Robust Design
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
388
396
.10.1115/1.1829728
15.
Lu
,
X.
,
Li
,
H.
, and
Chen
,
C.
,
2012
, “
Model-Based Probabilistic Robust Design With Data-Based Uncertainty Compensation for Partially Unknown System
,”
ASME J. Mech. Des.
,
134
(
2
), pp.
195
205
.10.1115/1.4005589
16.
Apley
,
D.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments Model-Based Probabilistic Robust Design With Data-Based Uncertainty Compensation for Partially Unknown System
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
959
.10.1115/1.2204974
17.
Du
,
X.
,
Venigella
,
P. K.
, and
Liu
,
D.
,
2009
, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1321
1337
.10.1016/j.mechmachtheory.2008.10.003
18.
Kota
,
S.
, and
Chiou
,
S.
,
1993
, “
Use of Orthogonal Arrays in Mechanism Synthesis
,”
Mech. Mach. Theory
,
28
(
6
), pp.
777
794
.10.1016/0094-114X(93)90021-M
19.
Kunjur
,
A.
, and
Krishnamury
,
S.
,
1997
, “
A Robust Multi-Criteria Optimization Approach
,”
Mech. Mach. Theory
,
32
(
7
), pp.
797
811
.10.1016/S0094-114X(97)00007-4
20.
Da Lio
,
M.
,
1997
, “
Robust Design of Linkages-Synthesis by Solving Non-Linear Optimization Problems
,”
Mech. Mach. Theory
,
32
(
8
), pp.
921
932
.10.1016/S0094-114X(97)00013-X
21.
Al-Widyan
,
K.
, and
Angeles
,
J.
,
2010
, “
The Robust Linkage Synthesis for Planar Rigid-Body Guidance
,”
ASME
Paper No. DETC2010-28308.10.1115/DETC2010-28308
22.
Mahableshwarkar
,
S.
, and
Kramer
,
S.
,
1990
, “
Sensitivity Analysis of the Burmester Equations of Planar Motion
,”
ASME J. Mech. Des.
,
112
, pp.
299
306
.10.1115/1.2912608
23.
Kalnas
,
R.
, and
Kota
,
S.
,
2001
, “
Incorporating Uncertainty Into Mechanism Synthesis
,”
Mech. Mach.ine Theory
,
46
, pp.
843
851
.10.1016/S0094-114X(01)00019-2
24.
Cramer
,
C.
,
1946
,
Mathematical Methods of Statistics
,
Princeton University Press
,
Princeton, NJ
.
25.
Householder
,
A.
,
1964
,
The Theory of Matrices in Numerical Analysis
,
Dover Publication, Inc.
,
New York
.
26.
Golub
,
G. H.
, and
Van Loan
,
C.
,
1996
,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore
.
27.
Rao
,
S.
,
1996
,
Engineering Optimization
,
John Wiley and Sons, Inc.
,
New York
.
28.
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems
,
3rd ed.
,
Springer-Verlag
,
New York
.
29.
Palm
,
W.
,
2000
,
MATLAB for Engineering Applications
,
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
.
30.
Balli
,
S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechnaism and Solution Rectification
,”
Mech. Mach. Theory
,
37
, pp.
851
876
.10.1016/S0094-114X(02)00035-6
31.
Angeles
,
J.
, and
Rojas
,
A.
,
1983
, “
An Optimisation Approach to the Branchig Problem of Plane Linkage Synthesis
,”
Proceedings of 6th World Congress on the Theory of Machines and Mechanisms
, pp.
120
123
.
You do not currently have access to this content.