When large surfaces need to be covered by a robotic system, the most common solution is to design or employ a robot with a comparably large workspace (WS), with high costs and high power requirements. In this paper, we propose a new methodology consisting in an efficient partitioning of the surface, in order to use robotic systems with a workspace of arbitrarily smaller size. These robots are called repetitive workspace robots (RWR). To support this method, we formally define a general index IRWR in order to evaluate the covering efficiency of the workspace. Three algorithms to compute the index are presented, the uniform expansion covering algorithm (UECA), the corrected inertial ellipsoid covering algorithm (CIECA), and the genetic covering algorithm (GCA). The GCA, which delivers a solution in the proximity of the global-best one, is used as a baseline for a comparison between the UECA and the CIECA. Eventually, we present the results of a performance analysis of the three algorithms in terms of computing time. The results show that the CIECA is the best algorithm for the evaluation of the IRWR, almost reaching the global-best solutions of the GCA. Finally, we illustrate a practical application with a comparison between two commercial industrial paint robots: the ABB™ IRB 550 and the CMA® Robotics GR 6100.

References

References
1.
Lung-Wen
,
T.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley and Sons
,
New York
, p.
25
.
2.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “
Workspace of Tendon-Driven Stewart Platforms: Basics, Classification, Details on the Planar 2-DOF Class
,”
International Conference on Motion and Vibration Control MOVIC
, Institute of Robotics, Zürich, Switzerland, Vol.
3
, pp.
871
876
.
3.
Tadokoro
,
S.
,
Matsushima
,
T.
,
Murao
,
Y.
,
Kohkawa
,
H.
, and
Hiller
,
M.
,
2001
, “
A Parallel Cable-Driven Motion Base for Virtual Acceleration
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Maui, HI
.
4.
Gallina
,
P.
, and
Rosati
,
G.
,
2002
, “
Manipulability of a Planar Wire Driven Haptic Device
,”
Mech. Mach. Theory
,
37
(
2
), pp.
215
228
.10.1016/S0094-114X(01)00076-3
5.
Gosselin
,
C. M.
, and
Barrette
,
G.
,
2001
, “
Kinematic Analysis of Planar Parallel Mechanisms Actuated With Cables
,”
Proceedings of Symposium on Mechanisms, Machines and Mechatronics
,
Quebec, Canada
, pp.
41
42
.
6.
Sawodnya
,
O.
,
Aschemannb
,
H.
, and
Lahresc
,
S.
,
2002
, “
An Automated Gantry Crane as a Large Workspace Robot
,”
Control Eng. Pract.
,
10
, pp.
1323
1338
.10.1016/S0967-0661(02)00097-7
7.
Papachristou
,
A.
,
Valsamos
,
H.
, and
Dentsoras
,
A.
,
2010
, “
Optimal Initial Positioning of Excavators in Digging Processes
,”
Proc. Inst. Mech. Eng., Part 1
224
, pp.
835
844
10.1243/09596518JSCE982.
8.
Stentz
,
A.
,
Bares
,
J.
,
Singh
,
S.
, and
Rowe
,
P.
,
1998
, “
A Robotic Excavator for Autonomous Truck Loading
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robotic Systems
.
9.
Lorenc
,
S. J.
,
Handlon
,
B. E.
, and
Bernold
,
L. E.
,
2000
, “
Development of a Robotic Bridge Maintenance System
,”
Autom. Constr.
,
9
, pp.
251
258
.10.1016/S0926-5805(99)00040-0
10.
Kim
,
Y. S.
,
Jung
,
M. H.
,
Cho
,
Y. K.
,
Lee
,
J.
, and
Jung
,
U.
,
2007
, “
Conceptual Design and Feasibility Analyses of a Robotic System for Automated Exterior Wall Painting
,”
Int. J. Adv. Robot. Syst.
,
4
, pp.
417
430
.
11.
Kershner
,
R.
,
1993
, “
The Number of Circles Covering a Set
,”
Am. J. Math.
,
61
, pp.
665
671
.10.2307/2371320
12.
Uhlery
,
C.
, and
Wright
,
S. J.
,
2013
, “
Packing Ellipsoids With Overlap
,”
SIAM Review
,
55
, pp.
671
706
10.1137/120872309.
13.
Karp
,
R. M.
,
1972
,
Reducibility Among Combinatorial Problems, Complexity of Computer Computations
,
Plenum
,
New York
, pp.
85
103
.
14.
Fowler
,
R. J.
,
Paterson
,
M. S.
, and
Tanimoto
,
S. L.
,
1981
, “
Optimal Packing and Covering in the Plane are NP-Complete
,”
Inf. Process. Lett.
,
12
(
3
), pp.
133
137
.10.1016/0020-0190(81)90111-3
15.
Melissen
,
J. B. M.
, and
Schuur
,
P. C.
,
1996
, “
Improved Coverings of a Square With Six and Eight Equal Circles
,”
Electr. J. Combin.
,
3
(
1R
), pp.
1
10
.
16.
Heppes
,
A.
, and
Melissen
,
H.
,
1997
, “
Covering a Rectangle With Equal Circles
,”
Period. Math. Hung.
,
34
, pp.
65
81
.10.1023/A:1004224507766
17.
Melissen
,
J. B. M.
, and
Schuur
,
P. C.
,
1997
, “
Covering a Rectangle With Six and Seven Circles
,”
Discrete Appl. Math.
,
99
, pp.
149
156
.10.1016/S0166-218X(99)00130-4
18.
Nurmela
,
K. J.
,
2000
, “
Conjecturally Optimal Coverings of an Equilateral Triangle With up to 36 Equal Circles
,”
Exp. Math.
,
9
(
2
), pp.
241
250
.10.1080/10586458.2000.10504649
19.
Bravais
,
A.
,
1866
, “
Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l'espace
,”
J. Ec. Polytech. (Paris)
,
19
, pp.
1
128
.
20.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization & Machine Learning
,
Addison-Wesley
,
Boston, MA
.
21.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
,
1991
, “
A Globally Convergent Augmented Lagrangian Algorithm for Optimization With General Constraints and Simple Bounds
,”
SIAM J. Numer. Anal.
,
28
, pp.
545
572
.10.1137/0728030
22.
Conn
,
A. R.
,
Gould
,
N. I. M.
, and
Toint
,
P. L.
,
1997
, “
A Globally Convergent Augmented Lagrangian Barrier Algorithm for Optimization With General Inequality Constraints and Simple Bounds
,”
Math. Comput.
,
66
, pp.
261
288
.10.1090/S0025-5718-97-00777-1
23.
Pratt
,
W. K.
,
1991
,
Digital Image Processing
,
John Wiley & Sons, Inc.
,
New York
, p.
633
.
You do not currently have access to this content.