Considering the nonlinear mechanical-magnetic coupling effects, an accurate mathematical model was established for analyzing large stroke penta-stable mechanism possessing multistability transforming capability, with which the mechanism can be switched from pentastability to quadristability. The multistability with any number of stable states can be achieved by integrating spatially arranged magnets and large deformation beams as the fundamental energy storage elements to maintain stable states. By theoretically analyzing the influence of the large mechanical deformation on the magnetic field distribution and system energy, the nonlinear force–displacement characteristics of the multistable mechanism were obtained numerically, which were in good agreement with those obtained by experiments and finite element simulation. Then, an energy-based design criterion for magnetic-mechanical multistable mechanisms was proposed according to the stability theory and energy variation principle. In addition, the multistable transformability was theoretically analyzed, which can transform the proposed mechanism from penta-stability to quadristability by only changing the magnetization direction of moving magnets without varying the structure parameters.

References

References
1.
Michaelis
,
S.
,
Timme
,
H. J.
,
Wycisk
,
M.
, and
Binder
,
J.
,
2000
, “
Additive Electroplating Technology as a Post-CMOS Process for the Production of MEMS Acceleration-Threshold Switches for Transportation Applications
,”
J. Micromech. Microeng.
,
10
(
2
), pp.
120
123
.10.1088/0960-1317/10/2/304
2.
Zhao
,
J.
,
Jia
,
J. Y.
, and
Wang
,
H. X.
,
2007
, “
A Novel Threshold Accelerometer With Post-Buckling Structures for Airbag Restraint System
,”
IEEE Sens. J.
,
7
(
8
), pp.
1102
1109
.10.1109/JSEN.2007.897936
3.
Go
,
J. S.
,
Cho
,
Y. H.
,
Kwak
,
B. M.
, and
Park
,
K.
,
1996
, “
Snapping Microswitches With Adjustable Acceleration Threshold
,”
Sens. Actuators A
,
54
(
1–3
), pp.
579
583
.10.1016/S0924-4247(97)80018-0
4.
Selvakumar
,
A.
,
Yazdi
,
N.
, and
Najafi
,
K.
,
1996
, “
Low Power, Wide Range Threshold Acceleration Sensing System
,”
Proceedings of IEEE Workshop on Micro-Electro-Mechanical Systems
,
San Diego, CA
, pp.
186
191
.
5.
Receveur
,
R. A. M.
,
Marxer
,
C.
,
Duport
,
F.
,
Woering
,
R.
,
Larik
, V
.
, and
Rooij
,
N. F.
,
2004
, “
Laterally Moving Bi-Stable MEMS DC-Switch for Biomedical Applications
,”
Proceedings of 17th IEEE International Conference, MEMS
,
Maastricht, Netherlands
, pp.
854
856
.
6.
Freudenreich
,
M.
,
Mescheder
,
U.
, and
Somogyi
,
G.
,
2004
, “
Simulation and Realization of a Novel Micromechanical Bi-Stable Switch
,”
Sens. Actuators A
,
114
(
2
), pp.
451
459
.10.1016/j.sna.2004.01.034
7.
Wycisk
,
M.
,
Binder
,
J.
,
Michaelis
,
S.
, and
Timmer
,
H.-J.
,
1999
, “
New Sensor On-Chip Technology for Micromechanical Acceleration-Threshold Switches
,”
Proc. SPIE
,
3891
, pp.
112
120
.10.1117/12.364462
8.
Michaelis
,
S.
,
Timmer
,
H.-J.
,
Wycisk
,
M.
, and
Binder
,
J.
,
2000
, “
Acceleration Threshold Switches From Additive Electroplating MEMS Process
,”
Sens. Actuators A
,
85
(
1
), pp.
418
423
.10.1016/S0924-4247(00)00377-0
9.
Hoffmann
,
M.
,
Kopka
,
P.
, and
Voges
,
E.
,
1999
, “
All-Silicon Bistable Micromechanical Fiber Switch Based on Advanced Bulk Micromachining
,”
IEEE J. Sel. Top. Quantum Electron.
,
5
(
1
), pp.
46
51
.10.1109/2944.748104
10.
Kruglick
,
E. J.
, and
Pister
,
S. J.
,
1998
, “
Bistable MEMS Relays and Contact Characterization
,”
Proceedings of IEEE Solid-State Sensor Actuator Workshop
, pp.
333
337
.
11.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
(
3
), pp.
273
280
.10.1109/JMEMS.2003.811751
12.
Pirrera
,
A.
,
Avitabile
,
D.
, and
Weaver
,
P. M.
,
2012
, “
On the Thermally Induced Bistability of Composite Cylindrical Shells for Morphing Structures
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
685
700
.10.1016/j.ijsolstr.2011.11.011
13.
Schultz
,
M. R.
,
2005
, “
A New Concept for Active Bistable Twisting Structures
,”
Proc. SPIE
,
5764
, pp.
241
252
.10.1117/12.598445
14.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
15.
Wu
,
C. C.
,
Lin
,
M. J.
, and
Chen
,
R.
,
2012
, “
Bistable Criterion for Mechanically Bistable Mechanism
,”
2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
,
Paris, France
, pp.
396
399
.
16.
Saif
,
M. T. A.
,
2000
, “
On a Tunable Bistable MEMS-Theory and Experiment
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
157
170
.10.1109/84.846696
17.
Buchaillot
,
L.
,
Millet
,
O.
,
Quévy
,
E.
, and
Collard
,
D.
,
2007
, “
Post-Buckling Dynamic Behavior of Self-Assembled 3D Microstructures
,”
Microsyst. Technol.
,
14
(
1
), pp.
69
78
.10.1007/s00542-007-0400-7
18.
Diaconu
,
C. G.
, and
Weaver
,
P. M.
,
2006
, “
Postbuckling of Long Unsymmetrically Laminated Composite Plates Under Axial Compression
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
6978
6997
.10.1016/j.ijsolstr.2006.02.017
19.
Mattioni
,
F.
,
Weaver
,
P. M.
,
Potter
,
K. D.
, and
Friswell
,
M. I.
,
2008
, “
Analysis of Thermally Induced Multistable Composites
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
657
675
.10.1016/j.ijsolstr.2007.08.031
20.
Mattioni
,
F.
,
Weaver
,
P. M.
, and
Friswell
,
M. I.
,
2009
, “
Multistable Composite Plates With Piecewise Variation of Lay-Up in the Planform
,”
Int. J. Solids Struct.
,
46
(
1
), pp.
151
164
.10.1016/j.ijsolstr.2008.08.023
21.
Santer
,
M.
, and
Pellegrino
,
S.
,
2008
, “
Compliant Multistable Structural Elements
,”
Int. J. Solids Struct.
,
45
(
24
), pp.
6190
6204
.10.1016/j.ijsolstr.2008.07.014
22.
Pham
,
H. T.
, and
Wang
,
D.-A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators A
,
167
(
2
), pp.
438
448
.10.1016/j.sna.2011.02.044
23.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
(11), pp.
198
203
.10.1115/1.2771577
24.
Chen
,
G.
, and
Du
,
Y.
,
2013
, “
Double-Young Tristable Mechanisms
,”
ASME J. Mech. Robot.
,
5
(1), p.
011007
.10.1115/1.4007941
25.
Chen
,
G.
,
Aten
,
Q.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
2
(1), p.
014501
.10.1115/1.4000529
26.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025011
.10.1088/0960-1317/19/2/025011
27.
Chen
,
G.
,
Gou
,
Y. J.
, and
Zhang
,
A. M.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.10.1115/1.4004543
28.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Robot.
,
5
(2), p.
021005
.10.1115/1.4023557
29.
Oberhammer
,
J.
,
Tang
,
M.
,
Liu
,
A. Q.
, and
Stemme
,
G.
,
2006
, “
Mechanically Tri-Stable, True Single Pole Double Throw (SPDT) Switches
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2251
2258
.10.1088/0960-1317/16/11/001
30.
Limaye
,
P.
,
Ramu
,
G.
,
Pamulapati
,
S.
, and
Ananthasuresh
,
G. K.
,
2012
, “
A Compliant Mechanism Kit With Flexible Beams and Connectors Along With Analysis and Optimal Synthesis Procedures
,”
Mech. Mach. Theory
,
49
, pp.
21
39
.10.1016/j.mechmachtheory.2011.07.008
31.
Pendleton
,
T. M.
, and
Jensen
,
B. D.
,
2007
, “
Development of a Tristable Compliant Mechanism
,”
Proceedings of 12TH IFToMM World Congress, A835
, 2007.
32.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
,
2005
, “
Shape Design of Pin-Jointed Multistable Compliant Mechanisms Using Snap-Through Behavior
,”
Struct. Multidisc. Optim.
,
30
(
4
), pp.
327
334
.10.1007/s00158-005-0532-2
33.
Mutlu
,
R.
, and
Alici
,
G.
,
2010
, “
A Multistable Linear Actuation Mechanism Based on Artificial Muscles
,”
ASME J. Mech. Des.
,
132
(
11
) p.
111001
.10.1115/1.4002661
34.
King
,
C.
,
Beaman
,
J. J.
,
Sreenivasan
,
S. V.
, and
Campbell
,
M.
,
2004
, “
Multistable Equilibrium System Design Methodology and Demonstration
,”
ASME J. Mech. Des.
,
26
(
6
), pp.
1036
1046
.10.1115/1.1799631
35.
Zhao
,
J.
,
Gao
,
R.
,
Yang
,
Y.
,
Huang
,
Y.
, and
Hu
,
P.
,
2013
, “
A Bidirectional Acceleration Switch Incorporating Magnetic-Fields-Based Tristable Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
18
(
1
), pp.
113
120
.10.1109/TMECH.2011.2163725
36.
Gerson
,
Y.
,
Krylov
,
S.
,
Ilic
,
B.
, and
Schreiber
,
D.
,
2012
, “
Design Considerations of a Large-Displacement Multistable Micro Actuator With Serially Connected Bistable Elements
,”
Finite Elem. Anal. Des.
,
49
(
1
), pp.
58
69
.10.1016/j.finel.2011.08.021
37.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatronics
,
8
(
1
), pp.
18
25
.10.1109/TMECH.2003.809156
38.
Zhao
,
J.
,
Yang
,
Y.
, and
Wang
,
H.
,
2010
, “
A Novel Magnetic Actuated Bistable Acceleration Switch With Low Contact Resistance
,”
IEEE Sens. J.
,
10
(
4
), pp.
869
876
.10.1109/JSEN.2009.2036442
39.
Yonnet
,
J. P.
, and
Hemmerlin
,
S.
,
1993
, “
Analytical Calculation of Permanent Magnet Couplings
,”
IEEE Trans. Magn.
,
29
, pp.
2932
2934
.10.1109/20.280913
40.
Akoun
,
G.
, and
Yonnet
,
J.
,
1984
, “
3D Analytical Calculation of the Forces Exerted Between Two Cuboidal Magnets
,”
IEEE Trans. Magn.
,
20
, pp.
1962
1964
.10.1109/TMAG.1984.1063554
You do not currently have access to this content.