In this paper, the solutions to closure equations of the original general line-symmetric Bricard 6R linkage are derived through matrix method. Two independent linkage closures are found in the original general line-symmetric Bricard 6R linkage, which are line-symmetric in geometry conditions, kinematic variables and spatial configurations. The revised general line-symmetric Bricard 6R linkage differs from the original linkage with negatively equaled offsets on the opposite joints. Further analysis shows that the revised linkage is equivalent to the original linkage with different setups on joint axis directions. As a special case of the general line-symmetric Bricard linkage, the line-symmetric octahedral Bricard linkage also has two forms in the closure equations. Their closure curves are not independent but joined into a full circle. This work offers an in-depth understanding about the kinematics of the general line-symmetric Bricard linkages.

References

References
1.
Bricard
,
R.
,
1897
, “
Mémoire sur la théorie de l'octaèdre articulé
,”
J. Pure Appl. Math.
,
3
, pp.
113
150
.
2.
Bricard
,
R.
,
1927
,
Leçons de cinématique
,
Gauthier-Villars
,
Paris
.
3.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.10.1016/0094-114X(80)90021-X
4.
Phillips
,
J.
,
1984
,
Freedom in Machinery I: Introducing Screw Theory
,
Cambridge University Press
,
Cambridge, UK
.
5.
Phillips
,
J.
,
1990
,
Freedom in Machinery II: Screw Theory Exemplified
,
Cambridge University Press
,
Cambridge, UK
.
6.
Bennett
,
G. T.
,
1911
, “
Deformable Octahedra
,”
Proc. London Math. Soc.
,
2
(
10
), pp.
309
343
.
7.
Baker
,
J. E.
,
1986
, “
Limiting Positions of a Bricard Linkage and Their Possible Relevance to the Cyclohexane Molecule
,”
Mech. Mach. Theory
,
21
(
3
), pp.
253
260
.10.1016/0094-114X(86)90101-1
8.
Lee
,
C. C.
,
1996
, “
On the Generation Synthesis of Movable Octahedral 6R Mechanisms
,”
ASME Design Engineering Technical Conferences and Computers in Engineering Conference, Irvine, CA, August 18–22, ASME Paper No. 96-DETC/MECH-1576
.
9.
Chai
,
W. H.
, and
Chen
,
Y.
,
2010
, “
The Line-Symmetric Octahedral Bricard Linkage and Its Structural Closure
,”
Mech. Mach. Theory
,
45
(
5
), pp.
772
779
.10.1016/j.mechmachtheory.2009.12.007
10.
Husty
,
M. L.
, and
Karger
,
A.
,
1996
, “
On Self-Motions of a Class of Parallel Manipulators
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
V.
Parenti-Castelli
, eds.,
Kluwer Academic Publishers
, Dordrecht, Netherlands, pp.
339
348
.
11.
Husty
,
M. L.
,
2000
, “
E. Borel's and R. Bricard's Papers on Displacements With Spherical Paths and Their Relevance to Self-Motions of Parallel Manipulators
,” International Symposium on History of Machines and Mechanisms (
HMM 2000
),
M.
Ceccarelli
, ed.,
Kluwer Academic Publisher
, Dordrecht, Netherlands, pp.
163
172
.10.1007/978-94-015-9554-4_19
12.
Husty
,
M. L.
, and
Zsombor-Murray
,
J.
,
1994
, “
A Special Type of Singular Stewart-Gough Platform
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
B.
Ravani
, eds., Springer, Dordrecht, Netherlands, pp.
449
458
.10.1007/978-94-015-8348-0_45
13.
Nawratil
,
G.
,
2011
, “
Self-Motions of TSSM Manipulators With Two Parallel Rotary Axes
,”
ASME J. Mech. Robot.
,
3
(
3
), p.
031007
.10.1115/1.4004030
14.
Nawratil
,
G.
,
2010
, “
Flexible Octahedra in the Projective Extension of the Euclidean 3-Space
,”
J. Geometry Graphics
,
14
(
2
), pp.
147
169
.
15.
Nelson
,
G. D.
,
2010
, “
Extending Bricard Octahedra
,” arXiv:1011.5193v1. Available at: http://arxiv.org/ftp/arxiv/papers/1011/1011.5193.pdf
16.
Goldberg
,
M.
,
1974
, “
A 6-Plate Linkage in Three Dimensions
,”
Math. Gazette
,
58
, pp.
287
289
.10.2307/3616101
17.
Yu
,
H. C.
,
1981
, “
The Deformable Hexahedron of Bricard
,”
Mech. Mach. Theory
,
16
(
6
), pp.
621
629
.10.1016/0094-114X(81)90068-9
18.
Wohlhart
,
K.
,
1993
, “
The Two Types of the Orthogonal Bricard Linkage
,”
Mech. Mach. Theory
,
28
(
6
), pp.
809
817
.10.1016/0094-114X(93)90023-O
19.
Baker
,
J. E.
, and
Wohlhart
,
K.
,
1994
, “
On the Single Screw Reciprocal to the General Line-Symmetric Six-Screw Linkage
,”
Mech. Mach. Theory
,
29
(
1
), pp.
169
175
.10.1016/0094-114X(94)90028-0
20.
Baker
,
J. E.
,
1997
, “
The Single Screw Reciprocal to the General Plane-Symmetric Six-Screw Linkage
,”
J. Geometry Graphics
,
1
(
1
), pp.
5
12
.
21.
Lee
,
C. C.
,
2000
, “
Computational and Geometric Investigation on the Reciprocal Screw Axis of Bricard Six-Revolute Mechanisms
,”
ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC'00), Baltimore, MD, September 10–13, ASME Paper No. DET00/MECH-6104
, pp.
93
101
.
22.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.10.1016/j.ijsolstr.2004.09.014
23.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.10.1016/j.mechmachtheory.2010.11.015
24.
Lee
,
C. C.
, and
Yan
,
H. S.
,
1993
, “
Movable Spatial 6R Mechanisms With Three Adjacent Parallel Axes
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
522
529
.10.1115/1.2919221
25.
Racila
,
L.
, and
Dahan
,
M.
,
2010
, “
Spatial Properties of Wohlhart Symmetric Mechanism
,”
Meccanica
,
45
(
2
), pp.
153
165
.10.1007/s11012-009-9232-0
26.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanisms
,” Ph.D. dissertation,
University of Oxford
,
Oxford, UK
.
27.
Wohlhart
,
K.
,
1987
, “
A New 6R Space Mechanism
,”
7th World Congress on the Theory of Machines and Mechanisms, Sevilla
,
Spain
, September 17–22, pp.
193
198
.
28.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
29.
Mavroidis
,
C.
, and
Roth
,
B.
,
1994
, “
Analysis and Synthesis of Overconstrained Mechanisms
,”
ASME Design Technical Conferences
, Minneapolis, MN, September 11–14, pp.
115
133
.
30.
Pellegrino
,
S.
,
1993
, “
Structural Computations With the Singular Value Decomposition of the Equilibrium Matrix
,”
Int. J. Solids Struct.
,
30
(
21
), pp.
3025
3035
.10.1016/0020-7683(93)90210-X
31.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
A Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
220
(
7
), pp.
1045
1056
.10.1243/09544062JMES245
32.
Bricard
,
R.
,
1897
, “
Mémoire sur la théorie de l'octaèdre articulé
,”
J. Pure Appl. Math.
,
3
, pp.
113
150
(English translation by E. A. Coutsias, 2010, e-print, http://arxiv.org/abs/1203.1286).
You do not currently have access to this content.