A simple yet general method determines the stiffness matrix for parallel manipulators with serially connected legs. Link and actuator flexibilities for each leg are modeled by flexibility matrices that are additive. The effect of passive joints is implicitly included using reciprocal screws to yield a leg stiffness matrix that is generally singular. Since the legs act in parallel the leg stiffnesses are additive and yield the manipulator stiffness. The method is applicable to overconstrained, exactly constrained, and underconstrained robots in generic or singular configurations. It is illustrated using the Tricept robot containing a passive constraint leg and an overconstrained translating manipulator. Numerical results are confirmed using commercial structural analysis software.

References

References
1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
2.
Clavel
,
R.
,
1988
, “
Delta, a Fast Robot With Parallel Geometry
,”
18th International Symposium on Industrial Robots
, Lausanne Switzerland, April 26–28, pp.
91
100
.
3.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.10.1017/S0263574799001678
4.
Tsai
,
L. W.
, and
Joshi
,
S.
,
2002
, “
Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
,
124
(
6
), pp.
245
253
.10.1115/1.1468860
5.
Kim
,
H. S.
, and
Tsai
,
L. W.
,
2003
, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
43
51
.10.1115/1.1543977
6.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots, Part 1: Methodology
,
Springer
,
New York
.
7.
Gogu
,
G.
,
2009
,
Structural Synthesis of Parallel Robots, Part 2: Translational Topologies With Two and Three Degrees of Freedom
,
Springer
,
New York
.
8.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping of Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.10.1109/70.56657
9.
Griffis
,
M.
, and
Duffy
,
J.
,
1993
, “
Global Stiffness Modeling of a Class of Simple Compliant Couplings
,”
Mech. Mach. Theory
,
28
(
2
), pp.
207
224
.10.1016/0094-114X(93)90088-D
10.
Gosselin
,
C. M.
, and
Zhang
,
D.
,
2002
, “
Stiffness Analysis of Parallel Mechanisms Using a Lumped Model
,”
Int. J. Rob. Autom.
,
17
(
1
),
pp 17
27
.
11.
Zhang
,
D.
,
2000
, “
Kinetostatic Analysis and Optimization of Parallel and Hybrid Architectures for Machine Tools
,” Ph.D. thesis, Laval University, Québec City, QC, Canada.
12.
Zhang
,
D.
,
2009
,
Parallel Robotic Machine Tools
,
Springer
,
New York
.
13.
Kim
,
H. S.
,
Shin
,
C. R.
, and
Kyung
,
J. H.
,
2005
, “
Stiffness Analysis of a Low-DOF Parallel Manipulator Including the Elastic Deformations of Both Joints and Links
,” 12th International Conference on Computer Applications in Shipbuilding (ICCAS 2005), Busan, South Korea, August 23–26.
14.
Xu
,
Q.
, and
Li
,
Y.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.10.1016/j.mechmachtheory.2007.02.002
15.
Joshi
,
S.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
, pp.
254
258
.10.1115/1.1469549
16.
Wang
,
Y.
,
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2009
, “
Stiffness Modeling of the Tricept Robot Using the Overall Jacobian Matrix
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021002
.10.1115/1.3046131
17.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
966
982
.10.1016/j.mechmachtheory.2008.05.017
18.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
(
5
), pp.
662
679
.10.1016/j.mechmachtheory.2010.12.008
19.
Deblaise
,
D.
,
Hernot
,
X.
, and
Maurine
,
P.
,
2006
, “
A Systematic Analytical Method for PKM Stiffness Matrix Calculation
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2006
), Orlando, FL, May 15–19.10.1109/ROBOT.2006.1642350
20.
Cammarata
,
A.
,
Condorelli
,
D.
, and
Sinatra
,
R.
,
2013
, “
An Algorithm to Study the Elastodynamics of Parallel Kinematic Machines With Lower Kinematic Pairs
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011004
.10.1115/1.4007705
21.
Patterson
,
T.
, and
Lipkin
,
H.
,
1992
, “
Duality of Kinematically Constrained Elastic Manipulation
,”
Lab. Rob. Autom.
,
4
(
2–3
), pp.
77
84
.
22.
Patterson
,
T.
, and
Lipkin
,
H.
,
1991
, “
Duality of Kinematically Constrained Elastic Manipulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA 1991
), Sacramento, CA, April 9–11, pp.
2820
2825
.10.1109/ROBOT.1991.132060
23.
Olazagoitia
,
J.
, and
Wyatt
,
S.
,
2007
, “
New PKM Tricept T9000 and Its Application to Flexible Manufacturing at Aerospace Industry
,”
SAE
Technical Paper No. 2007-01-3820.10.4271/2007-01-3820
24.
Gosselin
,
C.
,
2009
, “
Compact Dynamic Models for the Tripteron and Quadrupteron Parallel Manipulators
,”
Proc. IMechE Part I: J. Syst. Control Eng.
,
223
(
1
), pp.
1
12
.10.1243/09596518JSCE605
25.
Tuma
,
J. J.
,
1998
,
Handbook of Structural and Mechanical Matrices
,
McGraw-Hill
,
New York
.
26.
Ciblak
,
N.
, and
Lipkin
,
H.
,
1994
, “
Asymmetric Cartesian Stiffness for the Modelling of Compliant Robotic Systems
,”
ASME 23rd Biennial Mechanisms Conference
, Minneapolis, MN, September 11–14, pp.
197
204
.
27.
Chen
,
S.-F.
,
2005
, “
The Spatial Conservative Congruence Transformation for Manipulator Stiffness Modeling With Coordinate and Noncoordinate Bases
,”
J. Rob. Syst.
,
22
(
1
), pp.
31
44
.10.1002/rob.20047
28.
Jung
,
H. K.
,
Crane
,
C.
, and
Roberts
,
R. G.
,
2008
, “
Stiffness Mapping of Compliant Parallel Mechanisms in a Serial Arrangement
,”
Mech. Mach. Theory
,
43
(
3
), pp.
271
284
.10.1016/j.mechmachtheory.2007.04.006
You do not currently have access to this content.