This paper presents for the first time a novel two degrees of freedom (2-DOF) single-looped dual-plane-symmetric spatial eight-bar linkage with exact straight-line motion. Geometry and kinematics of the eight-bar linkage are investigated and closed-form equations are presented revealing the exact straight-line motion feature of the linkage on the condition that two symmetric inputs are given. In order to secure two symmetric inputs, a geared eight-bar linkage is then proposed converting the linkage into a 1-DOF linkage of exact straight-line motion. The direction of the straight-line motion produced by the proposed eight-bar linkage is changeable and is only dependent on the structure parameters of the two pairs of V-shaped R-R dyads of the linkage. Further, the proposed eight-bar linkage is applied to the synthesis and construction of a group of deployable Platonic mechanisms with radially reciprocating motion. The virtual-center-based (VCB) method is presented for the synthesis and prototypes of the deployable Platonic mechanisms are fabricated verifying the mobility and motion of the proposed mechanisms.

References

References
1.
Taimina
,
D.
,
2013
, “
How to Draw a Straight Line
,” http://kmoddl.library.cornell.edu/tutorials/04/
2.
Reuleaux
,
F.
,
1876
,
Kinematics of Machinery: Outlines of a Theory of Machines
.
Macmillan and Co.
,
London
.
3.
Luo
,
Z.
, and
Dai
,
J. S.
,
2007
, “
Patterned Bootstrap: A New Method that Gives Efficiency for Some Precision Position Synthesis Problems
,”
ASME J. Mech. Des.
,
129
(2), pp.
173
183
.10.1115/1.2406087
4.
Peaucellier
,
C.
,
1873
, “
Note sur une question de geometrie de compass
,”
Nouv. Ann. der Math.
,
12
, pp.
71
81
.
5.
Lipkin
,
L. I.
,
1871
, “
ber eine genaue Gelenk-Geradführung
,”
Proc. Bull. Acad. de St. Pétersbourg
,
16
, pp.
57
60
.
6.
Kempe
,
A. B.
,
1873
, “
On the Solution of Equations by Mechanical Means
,”
Cam. Mess. Math
,
2
, pp.
51
52
.
7.
Kempe
,
A. B.
,
1877
,
How to Draw a Straight Line
,
Macmillan and Co.
,
London
.
8.
Hart
,
H.
,
1875
, “
On Certain Conversion of Motions
,”
Camb. Messenger Math.
,
4
, pp.
82
88
.
9.
Hart
,
H.
,
1877
, “
On Some Cases of Parallel Motion
,”
Proc. London Math Soc.
,
8
, pp.
286
289
.
10.
Bricard
,
R.
,
1927
,
Lecons de Cinematique
,
Gauthier-Villar
,
Paris
.
11.
Dijksman
,
E.
,
1975
, “
Kempes (Focal) Linkage Generalized
,”
Mech. Mach. Theory
,
10
(6), pp.
445
460
.10.1016/0094-114X(75)90001-4
12.
Sarrus
,
1853
, “
Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires; et reciproquement
,”
Acad. Sci. C. R. Hebd. Seances Acad. Sci.
,
36
, pp.
1036
1038
.
13.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021005
.10.1115/1.4023557
14.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Axis Constraint Analysis and Its Resultant 6R Double-Centered Overconstrained Mechanisms
,”
ASME J. Mech. Rob.
3
(
3
), p.
031004
.10.1115/1.4004225
15.
Cui
,
L.
,
Dai
,
J. S.
, and
Lee
,
C. C.
,
2010
, “
Motion and Constraint Ruled Surfaces of the Schatz Linkage
,”
ASME 2010 International Design Engineering Technical Conferences
, Montreal, Canada, August 15–18,
ASME
Paper No. DETC2010-28883. 10.1115/DETC2010-28883
16.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots
,”
Eur. J. Mech. A/Solids
,
23
(
6
), pp.
1021
1039
.10.1016/j.euromechsol.2004.08.006
17.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.10.1115/1.1901708
18.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2013
, “
Unified Kinematics and Singularity Analysis of a Metamorphic Parallel Mechanism With Bifurcated Motion
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031004
.10.1115/1.4024292
19.
Wohlhart
,
K.
,
2013
, “
The Intersection of Vector Spaces: An Engineering Approach to the Shuffle Formula
,”
Mech. Mach. Theory
,
63
(
5
), pp.
59
72
.10.1016/j.mechmachtheory.2012.12.003
20.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.10.1115/1.4001730
21.
Zhao
,
J.-S.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Zhao
,
S.
,
2009
, “
Synthesis of a Rear Wheel Suspension Mechanism With Pure Rectilinear Motion
,”
ASME J. Mech. Des.
,
131
(
10
), p.
101007
.10.1115/1.3179153
22.
Zhao
,
J.-S.
,
Wang
,
J.-Y.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
,
2012
, “
Mechanism Synthesis of a Foldable Stair
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
014502
.10.1115/1.4005332
23.
Wohlhart
,
K.
,
2001
, “
Regular Polyhedral Linkages
,”
2nd Workshop on Computational Kinematics
, Sophia Antipolis, France, September 4–6, pp.
239
248
.
24.
Wohlhart
,
K.
,
2001
, “
New Regular Polyhedral Linkages
,”
8th IFToMM International Symposium on Theory of Machines and Mechanisms (SYROM 2001), Bucharest, Romania, August 28–September 1
, pp.
365
370
.
25.
Lalibert
,
T.
, and
Gosselin
,
C. M.
,
2007
, “
Polyhedra With Articulated Faces
,”
12th IFToMM World Congress, Besançon, France, June 17–20
.
26.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Synthesis of a Family of Regular Deployable Polyhedral Mechanisms (DPMs)
,”
Latest Advances in Robot Kinematics
,
J.
Lenarčič
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
123
130
.
27.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Duality of the Platonic Polyhedrons and Isomorphism of Regular Deployable Polyhedral Mechanisms (DPMs)
,”
Advances in Reconfigurable Mechanisms and Robots I
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, eds.,
Springer
,
New York
, pp.
759
771
.
28.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q. X.
, and
Jin
,
G.
,
2004
, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
,
39
(
4
), pp.
445
458
.10.1016/j.mechmachtheory.2003.12.004
29.
Stachel
,
H.
,
1994
, “
The Heureka-Polyhedron
,”
Intuitive Geometry
, Vol.
63
,
G.
Fejes Tóth
, ed.,
Colloq. Math. Soc. János Bolyai
,
North-Holland, Amsterdam
, pp.
447
459
.
30.
Wohlhart
,
K.
,
1995
, “
New Overconstrained Spheroidal Linkages
,”
Ninth World Congress on the Theory of Machines and Mechanisms
, Milan, Italy, August 29–September 2, pp.
149
154
.
31.
Wohlhart
,
K.
,
2008
, “
New Polyhedral Star Linkages
,”
10th International Conference on the Theory of Machines and Mechanisms
(TMM 2008), Liberec, Czech Republic, September 2–4.
32.
Gosselin
,
C. M.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Expandable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,”
Proc. IMechE Part C: J. Mech. Eng. Sci.
,
220
(7), pp.
1011
1018
.10.1243/09544062JMES174
33.
Kiper
,
G.
,
2009
, “
Fulleroid-Like Linkages
,” Second European Conference on Mechanism Science (
EUCOMES 08
), Cassino, Italy, September 17–20, pp.
423
430
.10.1007/978-1-4020-8915-2_51
34.
Röschel
,
O.
,
2012
, “
A Fulleroid-Like Mechanism Based on the Cube
,”
J. Geom. Graphics
,
16
(
1
), pp.
19
27
.
35.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
MIT
,
Cambridge, MA
.
36.
Lipkin
,
H.
,
2005
, “
A Note on Denavit-Hartenberg Notation in Robotics
,”
ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Long Beach, CA, September 24–28,
ASME
Paper No. DETC2005-85460. 10.1115/DETC2005-85460
37.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2003
,
Theory of Machines and Mechanisms
,
Oxford University
,
New York
.
38.
Dai
,
J. S.
,
2014
,
Screw Algebra and Kinematic Approaches for Mechanisms and Robotics
,
Springer
,
London.
39.
Wohlhart
,
K.
,
2004
, “
Irregular Polyhedral Linkages
,”
Eleventh World Congress in Mechanism and Machine Science
, Tianjin, China, April 1–4, pp.
1083
1087
.
40.
Wei
,
G.
, and
Dai
,
J. S.
,
2012
, “
Synthesis and Construction of a Family of One-DOF Highly Overconstrained Deployable Polyhedral Mechanisms (DPMs)
,”
ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Chicago, IL, August 12–15,
ASME
Paper No. DETC2012-70918. 10.1115/DETC2012-70918
41.
Hunt
,
K.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK.
42.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
(North-Holland Series in Applied Mathematics and Mechanics),
North-Holland
,
Amsterdam
.
43.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles Motion
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041002
.10.1115/1.4006951
44.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
,
1995
, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
Proc. IMechE Part C: J. Mech. Eng. Sci.
,
209
(
3
), pp.
263
271
.10.1243/PIME_PROC_1995_209_153_02
45.
Guest
,
S. D.
, and
Fowler
,
P. W.
,
2005
, “
A Symmetry-Extended Mobility Rule
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1002
1014
.10.1016/j.mechmachtheory.2004.12.017
46.
Cromwell
,
P. R.
,
1997
,
Polyhedra
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.