Screw systems composed of (the sum of) three planar pencils of lines are closely related to the singularity analysis of a number of three-legged parallel manipulators (PMs) in which the passive joints in each leg are a spherical joint and a single-DOF (degree of freedom) kinematic joint or generalized kinematic joint. This paper systematically classifies the screw systems composed of three planar pencils of lines based on the intersection of two planar pencils of lines, the classification of screw systems of order 2, and the reciprocal screw system of the three planar pencils of lines. The classification in this paper is more comprehensive than those in the literature. The above results are illustrated using CAD figures. This work may help readers better understand the geometric characteristics of singular configurations of a number of three-legged parallel manipulators.

References

References
1.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
2.
Agrawal
,
S.
, and
Roth
,
B.
,
1992
, “
Statics of In-Parallel Manipulator Systems
,”
ASME J. Mech. Des.
,
114
(
4
), pp.
564
568
.10.1115/1.2917044
3.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities as Configuration Space Singularities
,”
Advances in Robot Kinematics: Theory and Applications
,
F.
Thomas
and
J.
Lenarcic
, eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
183
192
.
4.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
757
769
.10.1109/TRO.2009.2020353
5.
Merlet
,
J.-P.
,
1989
, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
,
8
(
5
), pp.
45
56
.10.1177/027836498900800504
6.
McCarthy
,
J. M.
,
2011
,
Geometric Design of Linkages
,
2nd ed.
,
Springer
,
New York
.
7.
Amine
,
S.
,
Tale-Masouleh
,
M.
,
Caro
,
S.
,
Wenger
,
P.
, and
Gosselin
,
C.
,
2012
, “
Singularity Conditions of 3T1R Parallel Manipulators With Identical Limb Structures
,”
ASME J. Mech. Rob.
,
4
(
1
), p.
011011
.10.1115/1.4005336
8.
Huang
,
Z.
,
Zhao
,
Y. S.
,
Wang
,
J.
, and
Yu
,
J. J.
,
1999
, “
Kinematic Principle and Geometrical Condition of General-Linear-Complex Special Configuration of Parallel Manipulators
,”
Mech. Mach. Theory
,
34
, pp.
1171
1186
.10.1016/S0094-114X(98)00070-6
9.
Ebert-Uphoff
,
I.
,
Lee
,
J.-K.
, and
Lipkin
,
H.
,
2002
, “
Characteristic Tetrahedron of Wrench Singularities for Parallel Manipulators With Three Legs
,”
IMechE J. Mech. Eng. Sci.
,
216
(
C1
), pp.
81
93
.10.1243/0954406021524936
10.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2001
, “
Uncertainty Singularity Analysis of Parallel Manipulators Based on the Instability Analysis of Structures
,”
Int. J. Robot. Res.
,
20
(
11
), pp.
847
856
.10.1177/02783640122068146
11.
Yang
,
G.
,
Chen
,
I.-M.
,
Lin
,
W.
, and
Angeles
,
J.
,
2001
, “
Singularity Analysis of Three-Legged Parallel Robots Based on Passive Joint Velocities
,”
Trans. Rob. Autom.
,
17
(
4
), pp.
413
422
.10.1109/70.954754
12.
Downing
,
D. M.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
,
2002
, “
Identification of Special Configurations of the Octahedral Manipulator Using the Pure Condition
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
147
159
.10.1177/027836402760475351
13.
Huang
,
Z.
,
Chen
,
L. H.
, and
Li
,
Y. W.
,
2003
, “
The Singularity Principle and Property of Stewart Parallel Manipulator
,”
J. Rob. Syst.
,
20
(
4
), pp.
163
176
.10.1002/rob.10078
14.
Di Gregorio
,
R.
,
2005
, “
Forward Problem Singularities in Parallel Manipulators Which Generate SX-YS-ZS Structures
,”
Mech. Mach. Theory
,
40
(
5
), pp.
600
612
.10.1016/j.mechmachtheory.2004.10.004
15.
Ben-Horin
,
P.
, and
Shoham
,
M.
,
2006
, “
Singularity Condition of Six Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann-Cayley Algebra
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
577
590
.10.1109/TRO.2006.878958
16.
Pendar
,
H.
,
Mahnama
,
M.
, and
Zohoor
,
H.
,
2011
, “
Singularity Analysis of Parallel Manipulators Using Constraint Plane Method
,”
Mech. Mach. Theory
,
48
(
1
), pp.
33
43
.10.1016/j.mechmachtheory.2010.08.012
17.
Kong
,
X.
,
Yu
,
J.
, and
Gosselin
,
C. M.
,
2011
, “
Geometric Interpretation of Singular Configurations of a Class of Parallel Manipulators
,”
Proceedings of the 2011 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Aug. 28–31,
ASME
, Washington, DC, Paper No. DETC2005/MECH-481650.1115/DETC2011-48165.
18.
Hunt
,
K. H.
,
1990
,
Kinematic Geometry of Mechanisms
,
Cambridge University Press
,
Cambridge, UK
.
19.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
, New York.
20.
Kong
,
X.
, and
Gosselin
,
C.
,
2007
,
Type Synthesis of Parallel Mechanisms
,
Springer
,
New York
.
21.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.10.1016/S0094-114X(01)00004-0
22.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.10.1115/1.1901708
23.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.10.1016/S0094-114X(98)00029-9
24.
Dai
,
J. S.
,
2012
, “
Finite Displacement Screw Operators With Embedded Chasles' Motion
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041002
.10.1115/1.4006951
You do not currently have access to this content.