This work studies in detail how the judicial application of compliance in parallel manipulators can produce manipulators that require significantly lower actuator effort within a range of desired operating conditions. We propose a framework that uses the Jacobian matrices of redundant parallel manipulators to consider the influence of compliance both in parallel with the actuated joints as well as the passive joints, greatly simplifying previous approaches. We also propose a simple optimization procedure to maximize the motor force reduction for desired regions of the workspace and range of external forces. We then apply the method to a Stewart-Gough platform and to a 3-URS (universal rotational and spherical joint) manipulator. Our results show that parallel manipulators with tasks that involve a preferred external force direction, as for instance, big weights in the platform, can see large reductions in actuator effort through the judicial use of compliant joints without significantly losing rigidity.

References

References
1.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
399
406
.
2.
Dollar
,
A. M.
, and
Howe
,
R. D.
,
2010
, “
The Highly Adaptive SDM Hand: Design and Performance Evaluation
,”
Int. J. Rob. Res.
,
29
, pp.
585
597
.10.1177/0278364909360852
3.
Balasubramanian
,
R.
,
Belter
,
J. T.
, and
Dollar
,
A. M.
,
2012
, “
Disturbance Response of Two-Link Underactuated Serial-Link Chains
,”
ASME J. Mech. Robot.
,
4
(2), p.
021013
.10.1115/1.4006279
4.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2011
, “
Enhanced Stiffness Modeling of Manipulators With Passive Joints
,”
Mech. Mach. Theory
,
46
, pp.
662
679
.10.1016/j.mechmachtheory.2010.12.008
5.
Pashkevich
,
A.
,
Klimchik
,
A.
, and
Chablat
,
D.
,
2010
, “
Stiffness Analysis of Parallel Manipulators With Preloaded Passive Joints
,”
Advances in Robot Kinematics: Motion in Man and Machine
, Springer Netherlands, The Netherlands, pp.
465
474
.
6.
Quennouelle
,
C.
, and
Gosselin
,
C. M.
,
2009
, “
A Quasi-Static Model for Planar Compliant Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(2), p.
021012
.10.1115/1.3046144
7.
Carbone
,
G.
,
2011
, “
Stiffness Analysis and Experimental Validation of Robotic Systems
,”
Front. Mech. Eng.
,
6
, pp. 182–196.
8.
Su
,
H.-J.
, and
McCarthy
,
J. M.
,
2006
, “
A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms
,”
ASME J. Mech. Des.
,
128
(4), pp.
776
–786.10.1115/1.2202137
9.
Gosselin
,
C. M.
,
2008
, “
Gravity Compensation, Static Balancing, and Dynamic Balancing of Parallel Mechanisms
,”
Smart Devices and Machines for Advanced Manufacturing
, pp.
27
48
.10.1007/978-1-84800-147-3
10.
Jean
,
M.
, and
Gosselin
,
C.
,
1996
, “
Static Balancing of Planar Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
, pp.
3732
3737
.
11.
Wang
,
J.
, and
Gosselin
,
C.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
, pp.
437
452
.10.1016/S0094-114X(98)00031-7
12.
Merlet
,
J. P.
,
2006
,
Parallel Robots
,
2nd ed.
,
Springer
,
New York
.
13.
Hubert
,
J.
, and
Merlet
,
J. P.
,
2008
, “
Singularity Analysis Through Static Analysis
,”
Adv. Rob. Kinematics
, Springer Netherlands, pp.
13
20
.
14.
Hubert
,
J.
, and
Merlet
,
J. P.
,
2009
, “
Static of Parallel Manipulators and Closeness to Singularity
,”
ASME J. Mech. Rob.
,
1
(1), p.
011011
.10.1115/1.2961335
15.
Quennouelle
,
C.
, and
Gosselin
,
C.
,
2011
, “
Kinematostatic Modeling of Compliant Parallel Mechanisms. Application to a 3-PRRR Mechanism, the Tripteron
,”
Meccanica
,
46
, pp.
155
169
.10.1007/s11012-010-9408-7
16.
Carbone
,
G.
, and
Ceccarelli
,
M.
,
2004
, “
A Stiffness Analysis for a Hybrid Parallel-Serial Manipulator
,”
Robotica
,
22
, pp.
567
576
.10.1017/S0263574704000323
17.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Robot. Autom.
,
6
, pp. 377–382.
18.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
,
2009
, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
,
44
, pp.
966
982
.10.1016/j.mechmachtheory.2008.05.017
19.
Quennouelle
,
C.
, and
Gosselin
,
C.
,
2008
, “
Stiffness Matrix of Compliant Parallel Mechanisms
,”
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Brooklyn, New York.
20.
Schmit
,
N.
, and
Okada
,
M.
,
2012
, “
Simultaneous Optimization of Robot Trajectory and Nonlinear Springs to Minimize Actuator Torque
,”
IEEE International Conference on Robotics and Automation
, RiverCentre, Saint Paul, MN, pp.
2806
2811
.
21.
Schauß
,
T.
,
Scheint
,
M.
,
Sobotka
,
M.
,
Seiberl
,
W.
, and
Buss
,
M.
,
2009
, “
Effects of Compliant Ankles on Bipedal Locomotion
,”
IEEE International Conference on Robotics and Automation
, Kobe, Japan, pp.
2761
2766
.
22.
Mombaur
,
K. D.
,
Longman
,
R. W.
,
Bock
,
H. G.
, and
Schlöder
,
J. P.
,
2005
, “
Open-Loop Stable Running
,”
Robotica
,
23
, pp.
21
33
.10.1017/S026357470400058X
23.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
Force Redundancy in Parallel Manipulators: Theory and Practical Issues
,”
Mech. Mach. Theory
,
33
, pp.
727
742
.10.1016/S0094-114X(97)00094-3
24.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2012
, “
Static Analysis of Parallel Robots With Compliant Joints for In-Hand Manipulation
,”
International Conference on Intelligent Robots and Systems
, Portugal.
25.
Kanaan
,
D.
,
Wenger
,
W.
,
Caro
,
S.
, and
Chablat
,
D.
,
2009
, “
Singularity Analysis of Lower Mobility Parallel Manipulators Using Grassmann–Cayley Algebra
,”
IEEE Trans. Rob.
,
25
, pp. 995–1004.10.1109/TRO.2009.2017132
26.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel ManipulatorsWith Configurable Platforms
,”
IEEE Trans. Rob.
,
21
, pp.
277
287
.10.1109/TRO.2004.837234
27.
Tsai
,
L.-W.
,
1999
,
Robot Analysis. The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons, Inc.
, New York. 633-651.
28.
Mohamed
,
M. G.
, and
Duffy
,
J.
,
1985
, “
A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators
,”
J. Mech. Transm. Autom. Des.
,
107
, pp.
226
229
.10.1115/1.3258713
29.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
, pp.
220
–229.10.1115/1.1901708
30.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2001
, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
, pp. 633–651.10.1016/S0094-114X(01)00004-0
31.
Borràs
,
J.
,
Thomas
,
F.
, and
Torras
,
C.
, “
New Geometric Approaches to the Analysis and Design of Stewart–Gough Platforms
,”
IEEE/ASME Trans. Mechatronics
, (in press).10.1109/TMECH.2013.2239305
32.
Downing
,
D.
,
Samuel
,
A.
, and
Hunt
,
K.
,
2002
, “
Identification of the Special Configurations of the Octahedral Manipulator Using the Pure Condition
,”
Int. J. Rob. Res.
,
21
, pp.
147
159
.10.1177/027836402760475351
33.
You do not currently have access to this content.