Soft robotic manipulators are continuum robots made of soft materials that undergo continuous elastic deformation and produce motion with a smooth backbone curve. In many applications, these manipulators offer significant advantages over traditional manipulators due to their ability to conform to their surroundings, and manipulate objects of widely varying size using whole arm manipulation. Theoretically, soft robots have infinite degrees of freedom (DOF), but the number of sensors and actuators are limited. Many DOFs of soft robots are not directly observable and/or controllable, complicating shape estimation and control. In this paper, we present three methods of shape sensing for soft robotic manipulators based on a geometrically exact mechanical model. The first method uses load cells mounted at the base of the manipulator, the second method makes use of cable encoders running through the length of the manipulator, and the third method uses inclinometers mounted at the end of each section of the manipulator. Simulation results show an endpoint localization error of less than 3% of manipulator length with typical sensors. The methods are validated experimentally on the OctArm VI manipulator.

References

References
1.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.10.1080/11762320802557865
2.
Robinson
,
G.
, and
Davies
,
J. B. C.
,
1999
, “
Continuum Robots—a State of the Art
,”
IEEE International Conference on Robotics and Automation
, Detroit, Michigan, May 1999, Vol.
4
, pp.
2849
2854
.
3.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.10.1177/0278364910368147
4.
Leleu
,
S.
,
Abou-Kandil
,
H.
, and
Bonnassieux
,
Y.
,
2001
, “
Piezoelectric Actuators and Sensors Location for Active Control of Flexible Structures
,”
IEEE Trans. Instrum. Meas.
,
50
(
6
), pp.
1577
1582
.10.1109/19.982948
5.
Lyshevski
,
S.
,
2003
, “
Data-Intensive Analysis and Control of Flexible Pointing Systems With PZT Actuators
,”
Frequency Control Symposium and PDA Exhibition Jointly With the 17th European Frequency and Time Forum, 2003, Proceedings of the 2003 IEEE International
, May, pp.
948
956
.
6.
Camarillo
,
D.
,
Loewke
,
K.
,
Carlson
,
C.
, and
Salisbury
,
J.
,
2008
, “
Vision Based 3-D Shape Sensing of Flexible Manipulators
,”
Robotics and Automation, 2008, ICRA 2008. IEEE International Conference
on, May, pp.
2940
2947
.
7.
Yi
,
X.
,
Qian
,
J.
,
Shen
,
L.
,
Zhang
,
Y.
, and
Zhang
,
Z.
,
2007
, “
An Innovative 3D Colonoscope Shape Sensing Sensor Based on FBG Sensor Array
,”
Information Acquisition, 2007, ICIA’07, International Conference
on, July, pp.
227
232
.
8.
Miller
,
G. A.
,
Askins
,
C. G.
, and
Friebele
,
E. J.
,
2004
, “
Shape Sensing Using Distributed Fiber Optic Strain Measurements
,”
Proc. SPIE
,
5502
, pp.
528
531
.10.1117/12.566653
9.
Duncan
,
R. G.
,
Froggatt
,
M. E.
,
Kreger
,
S. T.
,
Seeley
,
R. J.
,
Gifford
,
D. K.
,
Sang
,
A. K.
, and
Wolfe
,
M. S.
,
2007
, “
High-Accuracy Fiber-Optic Shape Sensing
,”
Proc. SPIE
,
6530
, pp.
576
587
.
10.
Sayeh
,
M. R.
,
Gupta
,
L.
,
Kagaris
,
D.
,
Viswanathan
,
R.
, and
Chung
,
B.
,
2001
, “
Multiplexed Fiber-Optic Strain Sensors for Distributed Sensing
,”
Proc. SPIE
,
4357
, pp.
125
129
.10.1117/12.417877
11.
Davis
,
M. A.
,
Kersey
,
A. D.
,
Sirkis
,
J.
, and
Friebele
,
E. J.
,
1996
, “
Shape and Vibration Mode Sensing Using a Fiber Optic Bragg Grating Array
,”
Smart Mater. Struct.
,
5
(
6
), pp.
759
765
.10.1088/0964-1726/5/6/005
12.
Marcuse
,
D.
,
1976
, “
Curvature Loss Formula for Optical Fibers
,”
J. Opt. Soc. Am.
,
66
(
1
), pp.
216
220
.10.1364/JOSA.66.000216
13.
Hannan
,
M.
, and
Walker
,
I. D.
,
2005
, “
Real-Time Shape Estimation for Continuum Robots Using Vision
,”
Robotica
,
23
, pp.
645
651
.10.1017/S0263574704001018
14.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Robot.
,
24
(
4
), pp.
773
780
.10.1109/TRO.2008.924923
15.
Chitrakaran
,
V. K.
,
Behal
,
A.
,
Dawson
,
D. M.
, and
Walker
,
I. D.
,
2007
, “
Setpoint Regulation of Continuum Robots Using a Fixed Camera
,”
Robotica
,
25
, pp.
581
586
.10.1017/S0263574707003475
16.
Matsuno
,
T.
,
Fukuda
,
T.
,
Arai
,
F.
, and
Hasegawa
,
Y.
,
2004
, “
Flexible Rope Manipulation Using Elastic Deformation Modeling by Dual Manipulator System With Vision Sensor
,”
J. Robot. Mechatronics
,
16
(
1
), pp.
31
38
.
17.
Croom
,
J. M.
,
Rucker
,
D. C.
,
Romano
,
J. M.
, and
Webster
,
R. J.
,
2010
, “
Visual Sensing of Continuum Robot Shape Using Self-Organizing Maps
,”
IEEE International Conference on Robotics and Automation
, pp.
4591
4596
.
18.
Reiter
,
A.
,
Goldman
,
R. E.
,
Bajo
,
A.
,
Iliopoulos
,
K.
,
Simaan
,
N.
, and
Allen
,
P. K.
,
2011
. “
A Learning Algorithm for Visual Pose Estimation of Continuum Robots
,”
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, IEEE, pp.
2390
2396
.
19.
Reiter
,
A.
,
Bajo
,
A.
,
Iliopoulos
,
K.
,
Simaan
,
N.
, and
Allen
,
P. K.
,
2012
, “
Learning-Based Configuration Estimation of a Multi-Segment Continuum Robot
,”
Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference
on, IEEE, pp.
829
834
.
20.
Bajo
,
A.
,
Goldman
,
R. E.
, and
Simaan
,
N.
,
2011
, “
Configuration and Joint Feedback for Enhanced Performance of Multi-Segment Continuum Robots
,”
IEEE International Conference on Robotics and Automation
, pp.
2905
2912
.
21.
Lock
,
J.
,
Laing
,
G.
,
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2010
, “
Quasistatic Modeling of Concentric Tube Robots With External Loads
,”
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, IEEE, pp.
2325
2332
.
22.
Rucker
,
D.
,
Jones
,
B. A.
, and
Webster
,
R. J.
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Robot.
,
26
(
5
), pp.
769
780
.10.1109/TRO.2010.2062570
23.
Mahvash
,
M.
, and
Dupont
,
P. E.
,
2011
, “
Stiffness Control of Surgical Continuum Manipulators
,”
IEEE Trans. Robot.
,
27
(
2
), pp.
334
345
.10.1109/TRO.2011.2105410
24.
Rucker
,
D.
, and
Webster
,
R. J.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Robot.
,
27
(
6
), pp.
1033
1044
.10.1109/TRO.2011.2160469
25.
Dienno
,
D. V.
,
2006
, “
Design and Analysis of a Soft Robotic Manipulator With Base Rotation
,” Master's thesis, The Pennsylvania State University, University Park, PA.
26.
Trivedi
,
D.
,
Dienno
,
D.
, and
Rahn
,
C. D.
,
2008
, “
Optimal, Model-Based Design of Soft Robotic Manipulators
,”
J. Mech. Des.
,
130
(
9
), p.
091402
.10.1115/1.2943300
27.
Liu
,
W.
, and
Rahn
,
C. D.
,
2003
, “
Fiber-Reinforced Membrane Models of McKibben Actuators
,”
ASME J. Appl. Mech.
,
70
, pp.
853
859
.10.1115/1.1630812
28.
Antman
,
S. S.
,
2004
,
Nonlinear Problems of Elasticity
,
Springer-Verlag
,
New York
.
29.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2000
, “
Kinematic Transformations for Remotely Actuated Planar Continuum Robots
,”
IEEE International Conference on Intelligent Robots and Systems
, San Francisco, CA, pp.
19
26
.
30.
Kumar
,
A.
, and
Healey
,
T.
,
2010
, “
A Generalized Computational Approach to Stability of Static Equilibria of Nonlinearly Elastic Rods in the Presence of Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
25
), pp.
1805
1815
.10.1016/j.cma.2010.02.007
You do not currently have access to this content.