Using robotic systems to assist with sophisticated medical interventions such as aortic valve replacement under beating heart conditions necessitates the development of dexterous manipulators to ensure a safe and reliable operation. These mechanisms should not only be capable of tracking the desired trajectories with a high level of accuracy but also need to cope with strict medical constraints such as environment compatibility, patient safety and compactness. In this paper, we propose to design and experimentally qualify a robotic platform that takes into account the aforementioned requirements. Benefiting from the features of a parallel architecture, this four degrees of freedom (DOF) magnetic resonance imaging (MRI)-compatible patient-mounted and cable-driven manipulator (ROBOCATHETER) seeks to steer cardiac catheters under beating heart condition, while suitably addressing the deficiencies that currently used manipulators vastly suffer from. In addition to the detailed description of the robot design and its dedicated power transmission system, we also present the derivation of the robot's forward and inverse kinematic equations. The control algorithm implemented for the system actuation is a varying-gain proportional-integral-derivative (PID) controller, whose tracking performance will be examined.

References

References
1.
Cole
,
G.
,
Harrington
,
K.
,
Su
,
H.
,
Camilo
,
A.
,
Pilitsis
,
J.
, and
Fischer
,
G.
,
2010
, “
Closed-Loop Actuated Surgical System Utilizing Real-Time In-Situ MRI Guidance
,”
12th International Symposium on Experimental Robotics-ISER
, pp.
2489
2495
.
2.
Su
,
H.
,
Cole
,
G.
, and
Fischer
,
G.
,
2012
, “
High-Field MRI-Compatible Needle Placement Robots for Prostate Interventions: Pneumatic and Piezoelectric Approaches
,”
Adv. Robo. Virtual Reality
,
26
, pp.
3
32
.10.1007/978-3-642-23363-0
3.
Atluri
,
P.
,
Kozin
,
E.
,
Hiesinger
,
W.
, and
Joseph Woo
,
Y.
,
2009
, “
Off-Pump, Minimally Invasive and Robotic Coronary Revascularization Yield Improved Outcomes Over Traditional On-Pump CABG
,”
Int. J. Med. Robot. Comput. Assisted Surg.
,
5
(
1
), pp.
1
12
.10.1002/rcs.230
4.
Li
,
M.
,
Mazilu
,
D.
, and
Horvath
,
K.
,
2008
, “
Robotic System for Transapical Aortic Valve Replacement With MRI Guidance
,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008
, pp.
476
484
.
5.
Li
,
M.
,
Kapoor
,
A.
,
Mazilu
,
D.
, and
Horvath
,
K.
,
2011
, “
Pneumatic Actuated Robotic Assistant System for Aortic Valve Replacement Under MRI Guidance
,”
IEEE Trans. Biomed. Eng.
,
58
(
2
), pp.
443
451
.10.1109/TBME.2010.2089983
6.
Yeniaras
,
E.
,
Lamaury
,
J.
,
Deng
,
Z.
, and
Tsekos
,
N. V
,
2010
, “
Towards a New Cyber-Physical System for MRI-Guided and Robot-Assisted Cardiac Procedures
,” Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on, pp. 1–5.
7.
Salimi
,
A.
,
Mohammadpour
,
J.
,
Grigoriadis
,
K.
, and
Tsekos
,
N.
,
2011
, “
Dynamic Simulation of Blood Flow Effects on Flexible Manipulators During Intra-Cardiac Procedures on the Beating Heart
,” Volume 2, Power and Motion Control,
Proceedings of ASME Dynamic Systems and Control Conference
, Arlington, VA. October 31–November 2, 2011, Paper No. DSCC2011-6167, pp. 487–494.10.1115/DSCC2011-6167
8.
Susil
,
R.
,
Krieger
,
A.
,
Derbyshire
,
J.
,
Tanacs
,
A.
,
Whitcomb
,
L.
,
Fichtinger
,
G.
, and
Atalar
,
E.
,
2003
, “
System for MR Image–Guided Prostate Interventions: Canine Study
,”
Radiology
,
228
(
3
), pp.
886
894
.10.1148/radiol.2283020911
9.
Kim
,
D.
,
Kobayashi
,
E.
,
Dohi
,
T.
, and
Sakuma
,
I.
,
2002
, “
A New, Compact MR-Compatible Surgical Manipulator for Minimally Invasive Liver Surgery
,”
Proceedings Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, pp.
99
106
.
10.
Muntener
,
M.
,
Patriciu
,
A.
,
Petrisor
,
D.
,
Mazilu
,
D.
,
Bagga
,
H.
,
Kavoussi
,
L.
,
Cleary
,
K.
, and
Stoianovici
,
D.
,
2006
, “
Magnetic Resonance Imaging Compatible Robotic System for Fully Automated Brachytherapy Seed Placement
,”
Urology
,
68
(
6
), pp.
1313
1317
.10.1016/j.urology.2006.08.1089
11.
Tsekos
,
N.
,
Khanicheh
,
A.
,
Christoforou
,
E.
, and
Mavroidis
,
C.
,
2007
, “
Magnetic Resonance-Compatible Robotic and Mechatronics Systems for Image-Guided Interventions and Rehabilitation: A Review Study
,”
Annu. Rev. Biomed. Eng.
,
9
, pp.
351
387
.10.1146/annurev.bioeng.9.121806.160642
12.
Stoianovici
,
D.
,
Song
,
D.
,
Petrisor
,
D.
,
Ursu
,
D.
,
Mazilu
,
D.
,
Mutener
,
M.
,
Schar
,
M.
, and
Patriciu
,
A.
,
2007
, “
MRI Stealth Robot for Prostate Interventions
,”
Minim. Invas. Ther. Appl. Technol.
,
16
(
4
), pp.
241
248
.10.1080/13645700701520735
13.
Hungr
,
N.
,
Fouard
,
C.
,
Robert
,
A.
,
Bricault
,
I.
, and
Cinquin
,
P.
,
2011
, “
Interventional Radiology Robot for CT and MRI Guided Percutaneous Interventions
,”
Medical Image Computing and Computer-Assisted Intervention (MICCAI)
, pp.
137
144
.
14.
Ramezanifar
,
A.
,
Salimi
,
A.
,
Mohammadpour
,
J.
,
Kilicarslan
,
A.
,
Grigoriadis
,
K.
, and
Tsekos
,
N.
,
2011
, “
Linear Parameter Varying Control of a Robot Manipulator for Aortic Valve Implantation
,”
Proceedings of ASME Dynamic Systems and Control Conference
, Arlington, VA, Vol.
2
, October 31–November 2, 2011, Paper No. DSCC2011-6186, pp.
121
127
.10.1115/DSCC2011-6186
15.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
,
Grigoriadis
,
K.
, and
Tsekos
,
N.
,
2012
, “
ROBOCATH: A Patient-Mounted Parallel Robot to Position and Orient Surgical Catheters
,”
Proceedings of ASME Dynamic Systems and Control Conference
, Fort Lauderdale, FL, Vol.
3
, October 17–19, 2012, Paper No. DSCC2012-MOVIC2012-8846, pp.
471
480
.10.1115/DSCC2012-MOVIC2012-8846
16.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
, and
Grigoriadis
,
K.
,
2013
, “
Development of Master-Slave Robotic Systems for MRI-Guided Intracardiac Interventions
,”
Proceedings of ASME Dynamic Systems and Control Conference
, Palo Alto, CA, Oct. 21–23, 2013.
17.
Salimi
,
A.
,
Ramezanifar
,
A.
,
Mohammadpour
,
J.
, and
Grigoriadis
,
K.
,
2013
, “
Gain-scheduling Control of a Cable-Driven MRI-Compatible Robotic Platform for Intracardiac Interventions
,”
Proceedings of American Control Conference (ACC)
, pp.
746
751
.
18.
Schauer
,
D.
,
Hein
,
A.
, and
Lüth
,
T.
,
2003
, “
Robopoint—An Autoclavable Interactive Miniature Robot for Surgery and Interventional Radiology
,”
International Congress Series, Elsevier
, Vol.
1256
, pp.
555
560
.10.1016/S0531-5131(03)00510-7
19.
Schauer
,
D.
,
Hein
,
A.
, and
Lüth
,
T.
,
2003
, “
Dynamic Force Control for a Miniaturized Medical Robot System
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, July, 20–24, 2003, Vol.
2
, pp.
1090
1095
.10.1109/AIM.2003.1225494
20.
Craig
,
J.
,
2004
,
Introduction to Robotics: Mechanics and Control
, 3rd ed, Prentice Hall, NJ.
You do not currently have access to this content.