In recent years, snake-inspired locomotion has garnered increasing interest in the bio-inspired robotics community. This positive trend is largely due to the unique and highly effective gaits utilized by snakes to traverse various terrains and obstacles. These gaits make use of a snake's hyper-redundant body structure to adapt to the terrain and maneuver through tight spaces. Snake-inspired robots utilizing rectilinear motion, one of the primary gaits observed in natural snakes, have demonstrated favorable results on various terrains. However, previous robot designs utilizing rectilinear gaits were slow in speed. This paper presents a design and an exaggerated rectilinear gait concept for a snake-inspired robot which overcomes this limitation. The robot concept incorporates high speed linear motion and a new multimaterial, variable friction force anchoring concept. A series of traction experiments are conducted to determine appropriate materials to be used in the friction anchor (FA) design. The gait concept includes four unique gaits: a forward and a turning gait, which both emphasize speed for the robot; and a forward and turning gait which emphasize traction. We also report a comparative study of the performance of prototype robot designed using these concepts to other published snake-inspired robot designs.

References

References
1.
Gray
,
J. S.
,
1946
, “
The Mechanism of Locomotion in Snakes
,”
J. Exp. Biol.
,
23
, pp.
101
120
.
2.
Lissman
,
H. W.
,
1950
, “
Rectilinear Motion in a Snake (Boa Occidentalis)
,”
J. Exp. Biol.
,
26
, pp
368
379
.
3.
Hopkins
,
J. K.
,
Spranklin
,
B. W.
, and
Gupta
,
S. K.
,
2009
, “
A Survey of Snake-Inspired Robot Designs
,”
Bioinspiration Biomimetics
,
4
(
2
), p. 021001.10.1088/1748-3182/4/2/021001
4.
Transeth
,
A. A.
,
Pettersen
,
K. Y.
, and
Liljebäck
,
P.
,
2009
, “
A Survey on Snake Robot Modeling and Locomotion
,”
Robotica
,
27
, pp. 999–101510.1017/S0263574709005414
5.
Kalani
,
H.
, and
Akbarzadeh
,
A.
,
2011
, “
Effect of Friction Models on Snake Robot Performance
,”
Int. J. Model. Optim.
,
1
(
2
), pp
129
133
.
6.
Liljebäck
,
P.
,
Stavdahl
,
Ø.
, and
Pettersen
,
K. Y.
,
2008
, “
Modular Pneumatic Snake Robot: 3D Modelling, Implementation and Control
,”
Model., Identif. Control
,
29
(
1
), pp
21
28
.
7.
Wright
,
C.
,
Johnson
,
A.
,
Peck
,
A.
,
McCord
,
Z.
,
Naaktgeboren
,
A.
,
Gianfortoni
,
P.
,
Gonzalez-Rivero
,
M.
,
Hatton
R.
, and
Choset
,
H.
,
2007
, “
Design of a Modular Snake Robot
,”
Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Diego, CA.
8.
Kamimura
,
A.
,
Kurokawa
,
H.
,
Yoshida
,
E.
,
Murata
,
S.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2005
, “
Automatic Locomotion Design and Experiments for a Modular Robotic System
,”
IEEE/ASME Trans. Mechatron.
,
10
(3), pp.
314
325
.10.1109/TMECH.2005.848299
9.
Yim
,
M.
,
Duff
,
D. G.
, and
Roufas
,
K.
,
2000
, “
Modular Reconfigurable Robots: An Approach to Urban Search and Rescue
,”
Proceedings of the 1st International Workshop on Human-friendly Welfare Robotics Systems
, Taejon, Korea.
10.
USC Polymorphic Robotics Laboratory, http://www.isi.edu/robots/conro/
11.
Dowling
,
K.
,
1997
, “
Limbless Locomotion: Learning to Crawl with a Snake Robot
,” Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
12.
Paap
,
K. L.
,
Dehlwisch
,
M.
, and
Klaassen
,
B.
,
1996
, “
GMD-Snake: A Semi-Autonomous Snake-like Robot
,”
Proceedings of the 1996 Conference on Distributed Autonomous Robotic Systems
, Vol.
2
, Springer-Verlag, Tokyo.
13.
Ikeda
,
H.
, and
Takanashi
,
N.
,
1987
, “
Joint Assembly Moveable Like a Human Arm
,” U.S. Patent No. 4,683,406, NEC Corporation, Assignee.
14.
Hopkins
,
J. K.
, and
Gupta
,
S. K.
,
2012
, “
Characterization of Forward Rectilinear-Gait Performance for a Snake-Inspired Robot
,”
Proceedings of the 2012 Performance Metrics for Intelligent Systems (PerMIS'12) Workshop
, College Park, MD.
15.
Hopkins
,
J. K.
, and
Gupta
,
S. K.
,
2012
, “
Dynamics-based Model for a New Class of Rectilinear-Gait for a Snake-Inspired Robot
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Chicago, IL.
16.
Wright
,
C.
,
Buchan
,
A.
,
Brown
,
B.
,
Geist
,
J.
,
Schwerin
,
M.
,
Rollinson
,
D.
,
Tesch
,
M.
, and
Choset
,
H.
,
2012
, “
Design and Architecture of the Unified Modular Snake Robot
,”
Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA)
, Saint Paul, MN.
17.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1995
, “
The Kinematics of Hyper-Redundant Robot Locomotion
,”
IEEE Trans. Rob. Autom.
,
11
(6), pp.
781
793
.
18.
Yim
,
M.
,
1994
, “
Locomotion With a Unit-Modular Reconfigurable Robot
,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
19.
Ohno
,
H.
, and
Hirose
,
S.
,
2000
, “
Study on Slime Robot (Proposal of Slime Robot and Design of Slim Slime Robot)
,”
Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
3
.
20.
Chen
,
I-M.
,
Yeo
,
S. H.
, and
Gao
,
Y.
,
2001
, “
Locomotive Gait Generation for Inchworm-Like Robots Using Finite State Approach
,”
Robotica
,
19
(5), pp.
535
542
.
21.
Yeo
,
S. H.
,
Chen
,
I-M.
,
Senanayake
,
R. S.
, and
Wong
,
P. S.
,
2000
, “
Design and Development of a Planar Inchworm Robot
,”
Proceedings of the 17th IAARC International Symposium on Automation and Robotics in Construction
, Taipei, Taiwan.
22.
Chen
,
I.-M.
, and
Yeo
,
S. H.
,
2003
, “
Locomotion of a Two-Dimensional Walking-Climbing Robot Using a Closed-Loop Mechanism: From Gait Generation to Navigation
,”
Int. J. Rob. Res.
,
22
(1), pp.
21
40
.
23.
Suh
,
J.
,
Homans
,
S.
, and
Yim
,
M.
,
2002
, “
Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robotics
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
.
24.
Saga
,
N.
, and
Nakamura
,
T.
,
2004
, “
Development of a Peristaltic Crawling Robot Using Magnetic Fluid on the Basis of the Locomotion Mechanism of the Earthworm
,”
Smart Mater. Struct.
,
13
(3), pp.
566
569
.10.1088/0964-1726/13/3/016
25.
Seok
,
S.
,
Onal
,
C. D.
,
Wood
,
R.
,
Rus
,
D.
, and
Kim
,
S.
,
2010
, “
Peristaltic Locomotion With Antagonistic Actuators in Soft Robotics
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, Anchorage, AK.
26.
Boxerbaum
,
A. S.
,
Chiel
,
H. J.
, and
Quinn
,
R. D.
,
2010
, “
A New Theory and Methods for Creating Peristaltic Motion in a Robotic Platform
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, Anchorage, AK.
27.
Jinwan Lim
,
J.
,
Park
,
H.
,
Moon
,
S.
, and
Kim
,
B.
,
2007
, “
Pneumatic Robot Based on Inchworm Motion for Small Diameter Pipe Inspection
,”
Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics
, Sanya, China.
28.
Merino
,
C. S.
, and
Tosunoglu
,
S.
,
2004
, “
Design of a Crawling Gait for a Modular Robot
,”
Proceedings of The 17th Florida Conference on Recent Advances in Robotics
, FCRAR 2004, University of Central Florida, Orlando, Florida.
29.
Poi
,
G.
,
Scarabeo
,
C.
, and
Allotta
,
B.
,
1998
, “
Traveling Wave Locomotion Hyper-Redundant Mobile Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1
.
30.
Kulali
,
G. M.
,
Gevher
,
M.
,
Erkmen
,
A. M.
, and
Erkmen
, I
.
,
2002
, “
Intelligent Gait Synthesizer for Serpentine Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
.
31.
Chen
,
L.
,
Wang
,
Y.
,
Ma
,
S.
, and
Li
,
B.
,
2003
, “
Analysis of Traveling Wave Locomotion of Snake Robot
,”
Proceedings of IEEE International Conference on Robotics
, Intelligent Systems and Signal Processing.
32.
Rincon
,
D. M.
, and
Sotelo
,
J.
,
2003
, “
Ver-vite: Dynamic and Experimental Analysis for Inchwormlike Biomimetic Robots
,”
IEEE Rob. Autom. Mag.
,
10
(4), pp.
53
57
.10.1109/MRA.2003.1256298
33.
Greenfield
,
A.
,
Rizzi
,
A. A.
, and
Choset
,
H.
,
2005
, “
Dynamic Ambiguities in Frictional Rigid-Body Systems With Application to Climbing via Bracing
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain.
34.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
, and
Pettersen
,
K. Y.
,
2006
, “
Non-Smooth 3D Modeling of a Snake Robot With Frictional Unilateral Constraints
,”
Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO'06)
, Kunming, China.
35.
Hopkins
,
J. K.
,
Spranklin
,
B. W.
, and
Gupta
,
S. K.
,
2011
, “
A Case Study in Optimization of Gait and Physical Parameters for a Snake-Inspired Robot Based on a Rectilinear Gait
,”
ASME J. Mech. Rob.
,
3
(
1
), p. 01450310.1115/1.4003077
36.
Andersson
,
S. B.
,
2006
, “
Pulse-Based Gaits for Motion of a Snake-Like Robot
,”
Submitted to 8th International Federation of Automatic Control (IFAC
) Symposium on Robot Control
.
37.
Enner
,
F.
,
Rollinson
,
D.
, and
Choset
,
H.
,
2012
, “
Simplified Motion Modeling for Snake Robots
,”
Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA)
, Saint Paul, MN.
38.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley and Sons
,
New York, NY
.
You do not currently have access to this content.