In the past few years, the authors have proposed several prototypes of a Cable-driven upper ARm EXoskeleton (CAREX) for arm rehabilitation. One of the assumptions of CAREX was that the glenohumeral joint rotation center (GH-c) remains stationary in the inertial frame during motion, which leads to inaccuracy in the kinematic model and may hamper training performance. In this paper, we propose a novel approach to estimate GH-c using measurements of shoulder joint angles and cable lengths. This helps in locating the GH-c center appropriately within the kinematic model. As a result, more accurate kinematic model can be used to improve the training of human users. An estimation algorithm is presented to compute the GH-c in real-time. The algorithm was implemented on the latest prototype of CAREX. Simulations and preliminary experimental results are presented to validate the proposed GH-c estimation method.

References

References
1.
Prange
,
G. B.
,
Jannink
,
M. J. A.
,
Groothuis-Oudshoorn
,
C.
,
Hermens
,
H. J.
, and
IJzerman
,
M. J.
,
2006
, “
Systematic Review of the Effect of Robot-Aided Therapy on Recovery of the Hemiparetic Arm After Stroke
,”
J. Rehabil. Res. Dev.
,
43
(
2
), pp.
171
184
.10.1682/JRRD.2005.04.0076
2.
Kwakkel
,
G.
,
Kollen
,
B. J.
, and
Krebs
,
H. I.
,
2008
, “
Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review
,”
Neurorehabilitation Neural Repair
,
22
(
2
), pp.
111
121
.10.1177/1545968307305457
3.
Krebs
,
H. I.
,
Hogan
,
N.
,
Aisen
,
M. L.
, and
Volpe
,
B.
,
1998
, “
Robot-Aided Neurorehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
6
(
1
), pp.
75
87
.10.1109/86.662623
4.
Lum
,
P.
,
Reinkensmeyer
,
D.
, and
Lehman
,
S.
,
1993
, “
Robotic Assist Devices for Bimanual Physical Therapy: Preliminary Experiments
,”
IEEE Trans. Rehabil. Eng.
,
1
(
3
), pp.
185
191
.10.1109/86.279267
5.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
Armin III—Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.10.1080/11762320902840179
6.
Frisoli
,
A.
,
Rocchi
,
F.
,
Marcheschi
,
S.
,
Dettori
,
A.
,
Salsedo
,
F.
, and
Bergamasco
,
M.
,
2005
, “
A New Force-Feedback Arm Exoskeleton for Haptic Interaction in Virtual Environments
,”
First Joint Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005
, March 18–20 2005, pp.
195
201
.10.1109/WHC.2005.15
7.
Schiele
,
A.
, and
van der Helm
,
F.
,
2006
, “
Kinematic Design to Improve Ergonomics in Human Machine Interaction
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
14
(
4
), pp.
456
469
.10.1109/TNSRE.2006.881565
8.
Ball
,
S.
,
Brown
,
I.
, and
Scott
,
S.
,
2007
, “
Medarm: A Rehabilitation Robot With 5DOF at the Shoulder Complex
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Sept. 4–7, 2005, Zurich, Switzerland, pp.
1
6
. 10.1109/AIM.2007.4412446
9.
Stienen
,
A.
,
Hekman
,
E.
,
van der Helm
,
F.
, and
van der Kooij
,
H.
,
2009
, “
Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations
,”
IEEE Trans. Rob. Autom.
,
25
(
3
), pp.
628
633
.10.1109/TRO.2009.2019147
10.
Brackbill
,
E.
,
Mao
,
Y.
,
Agrawal
,
S. K.
,
Annapragada
,
M.
, and
Dubey
,
V.
,
2009
, “
Dynamics and Control of a 4-DOF Wearable Cable-Driven Upper Arm Exoskeleton
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
2300
2305
.
11.
Agrawal
,
S. K.
,
Dubey
,
V. N.
,
John
J.
Gangloff
,
J.
,
Brackbill
,
E.
,
Mao
,
Y.
, and
Sangwan
,
V.
,
2009
, “
Design and Optimization of a Cable Driven Upper Arm Exoskeleton
,”
ASME J. Med. Devices
,
3
(
3
), p.
031004
.10.1115/1.3191724
12.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2010
, “
Wearable Cable-Driven Upper Arm Exoskeleton-Motion With Transmitted Joint Force and Moment Minimization
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4334
4339
.10.1109/ROBOT.2010.5509823
13.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2011
, “
A Cable Driven Upper Arm Exoskeleton for Upper Extremity Rehabilitation
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
4163
4168
.
14.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Cable Driven Arm Exoskeleton (CAREX): Transition From Experiments on a Mechanical Arm to the Human Arm
,”
Proceedings of IEEE International Conference on Robotics and Automation
, May 9–13, 2011, Shanghai, China, 4163–4168. 10.1109/ICRA.2011.5980142
15.
Mao
,
Y.
, and
Agrawal
,
S. K.
,
2012
, “
Design of a Cable Driven Arm Exoskeleton (CAREX) for Neural Rehabilitation
,”
IEEE Trans. Robot.
,
28
(
4
), pp.
922
931
.10.1109/TRO.2012.2189496
16.
Wu
,
G.
,
Van Der Helm
,
F. C. T.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion-Part II: Shoulder, Elbow, Wrist, Hand
,”
J. Biomech.
,
38
, pp.
981
992
.10.1016/j.jbiomech.2004.05.042
17.
Perry
,
J.
,
Rosen
,
J.
, and
Burns
,
S.
,
2007
, “
Upper-Limb Powered Exoskeleton Design
,”
IEEE/ASME Trans. Mechatron.
,
12
(
4
), pp.
408
417
.10.1109/TMECH.2007.901934
18.
Carignan
,
C.
,
Liszka
,
M.
, and
Roderick
,
S.
,
2005
, “
Design of an Arm Exoskeleton With Scapula Motion for Shoulder Rehabilitation
,”
Proceedings of International Conference on Advanced Robotics
, July 18–20, 2005, Seattle, WA, pp.
524
531
.10.1109/ICAR.2005.1507459
You do not currently have access to this content.