The concept of polyhedra with articulated faces is investigated in this paper. Polyhedra with articulated faces can be described as polyhedral frameworks, whose faces are constrained to remain planar. A mechanical arrangement based on a single type of component is proposed for the construction of the polyhedra. Then, the determination of their infinitesimal and full-cycle mobility is addressed. In some cases, they are rigid structures while in others they are articulated mechanisms. Finally, examples are given, using simulation and physical models, and several new families of articulated polyhedra are synthesized.

References

References
1.
Alexandrov
,
A. D.
,
1958
,
Konvexe Polyeder
,
Akademie-Verlag
,
Berlin
, Germany.
2.
Gluck
H.
,
1975
, “
Almost All Simply Connected Surfaces are Rigid
,”
Geometric Topology
, Lectures Notes in Mathematics, No. 438,
Springer-Verlag
,
Berlin
, Germany, pp.
225
239
.
3.
Connelly
R.
,
1979
, “
The Rigidity of Polyhedral Surfaces
,”
Math. Mag.
,
52
(
5
), pp.
275
283
.10.2307/2689778
4.
Asimow
,
L.
, and
Roth
,
B.
,
1979
, “
The Rigidity of Graphs II
,”
J. Math. Anal. Appl.
,
68
, pp.
171
190
.10.1016/0022-247X(79)90108-2
5.
Roth
B.
,
1981
, “
Rigid and Flexible Frameworks
,”
Am. Math. Monthly
,
88
(
1
), pp.
6
21
.10.2307/2320705
6.
Whiteley
,
W.
,
1984
, “
Infinitesimally Rigid Polyhedra. 1. Statics of Framework
,”
Trans. Am. Math. Soc.
,
285
(
2
), pp.
431
465
.10.1090/S0002-9947-1984-0752486-6
7.
Verheyen
H. F.
,
1984
, “
Expandable Polyhedral Structures Based on Dipolygonids
,”
Proceedings of the Third Conference on Space Structures
, London, U.K., pp.
88
93
.
8.
Wohlhart
K.
,
2001
, “
Regular Polyhedral Linkages
,”
Proceedings of the 2nd Workshop on Computational Kinematics
, Seoul, Korea, pp.
239
248
.
9.
Agrawal
,
S. K.
,
Kumar
,
S.
, and
Yim
,
M.
,
2002
, “
Polyhedral Single Degree-of-Freedom Expanding Structures: Design and Prototypes
,”
ASME J. Mech. Des.
,
124
(3), pp.
473
478
.10.1115/1.1480413
10.
Wohlhart
,
K.
,
2004
, “
Irregular Polyhedral Linkages
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
, Tianjin, China, pp.
1083
1087
.
11.
Gosselin
,
C.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Expandable Polyhedral Mechanisms Based on Polygonal 1-DOF Faces
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
C7
), pp.
1011
1018
.10.1243/09544062JMES174
12.
Cromwell
,
P. R.
,
1997
,
Polyhedra
,
Cambridge University Press
,
Cambridge
, UK.
13.
Cauchy
,
A. L.
,
1813
, “
Sur les Polygones et les Polyèdres, Second Mémoire
,”
J. Ec. Polytech.
,
9
, pp.
87
98
.
14.
Laliberté
,
T.
, and
Gosselin
,
C.
,
2007
, “
Polyhedra With Articulated Faces
,”
Proceedings of the 12th IFToMM World Congress
, Besançon, June 18–21.
15.
Johnson
,
N. W.
,
1966
, “
Convex Polyhedra With Regular Faces
,”
Can. J. Math.
,
18
, pp.
169
200
.10.4153/CJM-1966-021-8
16.
Weisstein
,
E. W.
, 2013, “
Polyhedron
.” http ://mathworld.wolfram.com/Polyhedron.html.
17.
Hart
,
G. W.
, “
The Pavillion of Polyhedrality
.” Available at: http://www.georgehart.com/pavillon.html
18.
“Polyhedron.” Available at: http://en.wikipedia.org/wiki/Polyhedron
19.
Laliberté
,
T.
, and
Gosselin
,
C.
,
2006
, “
Construction Members for Three-Dimensional Assemblies
,” US Patent No. 7,118,442.
20.
Angeles
,
J.
, and
Gosselin
,
C.
,
1988
, “
Détermination du Degré de Liberté des Chaînes Cinématiques
,”
Trans. SCGM
,
12
(
4
), pp.
219
226
.
21.
Steffen
,
K.
,
1978
, “
A Symmetric Flexible Connelly Sphere With Only Nine Vertices
,” I.H.E.S. Availalbe at: http://www.math.cornell.edu/~connelly/Steffen.pdf
22.
Jessen
,
B.
,
1967
, “
Orthogonal Icosahedron
,”
Nord. Mat. Tidskr.
,
15
, pp.
90
96
.
23.
Goldberg
,
M.
,
1978
, “
Unstable Polyhedral Structures
,”
Math. Mag.
,
51
(
3
), pp.
165
170
.10.2307/2689996
24.
Blaschke
,
W.
,
1920
, “
Wackelige Achtfache
,”
Math. Z.
,
6
, pp.
85
93
.10.1007/BF01202993
25.
“Buckminsterfullerene.” Available at: http://en.wikipedia.org/wiki/Buckminsterfullerene
26.
Weisstein
,
E. W.
, “
Johnson Solid
,” MathWorld–A Wolfram Web Ressource. Available at: http://mathworld.wolfram.com/JohnsonSolid.html
27.
“Johnson Solid.” Available at: http://en.wikipedia.org/wiki/Johnson_solid
28.
Zlatanov
,
D.
,
Bonev
, I
. A.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol. 1, pp.
496
502
.
29.
Zlatanov
,
D.
,
Bonev
, I
. A.
, and
Gosselin
,
C.
,
2002
, “
Constraint Singularities as C-Space Singularities
,”
Proceedings of the 8th International Symposium on Advances in Robot Kinematics (ARK2002)
, Caldes de Malavella, Spain, June 24–28.
30.
Kong
,
X.
,
Gosselin
,
C.
, and
Richard
,
P.-L.
,
2006
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.10.1115/1.2717228
31.
RicoMartinez
,
J. M.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
.10.1115/1.1541628
32.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.10.1016/j.mechmachtheory.2004.12.014
33.
Wampler
,
C. W.
,
Hauenstein
,
J. D.
, and
Sommese
,
A. J.
,
2011
,
Mechanism Mobility and a Local Dimension Test
,”
Mech. Mach. Theory
,
46
, pp.
1193
1206
.
34.
“Polyhedra with Articulated Faces,” Laboratoire de robotique de l'Université Laval. Available at: http://robot.gmc.ulaval.ca/en/research/theme407.html
You do not currently have access to this content.