Two types of foldable rings are designed using polynomial continuation. The first type of ring, when deployed, forms regular polygons with an even number of sides and is designed by specifying a sequence of orientations which each bar must attain at various stages throughout deployment. A design criterion is that these foldable rings must fold with all bars parallel in the stowed position. At first, all three Euler angles are used to specify bar orientations, but elimination is also used to reduce the number of specified Euler angles to two, allowing greater freedom in the design process. The second type of ring, when deployed, forms doubly plane-symmetric (irregular) polygons. The doubly symmetric rings are designed using polynomial continuation, but in this example a series of bar end locations (in the stowed position) is used as the design criterion with focus restricted to those rings possessing eight bars.

References

References
1.
Morgan
,
A.
, and
Wampler
,
C.
,
1990
, “
Solving a Planar Four-Bar Design Problem Using Continuation
,”
ASME J. Mech. Des.
,
112
(
4
), pp.
544
550
.10.1115/1.2912644
2.
Subbian
,
T.
, and
Flugrad
,
D. R.
,
1991
, “
Four-Bar Path Generation Synthesis by a Continuation Method
,”
ASME J. Mech. Des.
,
113
(
1
), pp.
63
69
.10.1115/1.2912752
3.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
.10.1115/1.2916909
4.
Angeles
,
J.
,
Alivizatos
,
A.
, and
Akhras
,
R.
,
1988
, “
An Unconstrained Nonlinear Least-Square Method of Optimization of RRRR Planar Path Generators
,”
Mech. Mach. Theory
,
23
(
5
), pp.
343
353
.10.1016/0094-114X(88)90048-1
5.
Sancibrian
,
R.
,
Viadero
,
F.
,
García
,
P.
, and
Fernández
,
A.
,
2004
, “
Gradient-Based Optimization of Path Synthesis Problems in Planar Mechanisms
,”
Mech. Mach. Theory
,
39
, pp.
839
856
.10.1016/j.mechmachtheory.2004.02.012
6.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
,
1992
, “
Optimal Synthesis of Mechanisms Using Nonlinear Goal Programming Techniques
,”
Mech. Mach. Theory
,
27
(
5
), pp.
599
612
.10.1016/0094-114X(92)90048-M
7.
Martínez-Alfaro
,
H.
,
2007
, “Four-Bar Mechanism Synthesis for n Desired Path Points Using Simulated Annealing,”
Advances in Metaheuristics for Hard Optimization
,
Springer Berlin
,
Heidelberg
, pp.
23
37
.
8.
Owen
,
J. C.
,
1991
, “
Algebraic Solution for Geometry from Dimensional Constraints
,” ACM Symposium on Solid and Physical Modeling.
9.
Lee
,
H.-Y.
, and
Liang
,
C.-G.
,
1988
, “
Displacement Analysis of the General Spatial 7-Link 7R Mechanism
,”
Mech. Mach. Theory
,
23
(
3
), pp.
219
226
.10.1016/0094-114X(88)90107-3
10.
Chtcherba
,
A. D.
, and
Kapur
,
D.
,
2004
, “
Constructing Sylvester-Type Resultant Matrices Using the Dixon Formulation
,”
J. Symb. Comput.
38
, pp.
777
814
.10.1016/j.jsc.2003.11.003
11.
Nielsen
,
J.
,
1997
, “
Solving Sets of Nonlinear Equations for the Design and Analysis of Mechanical Systems
,” Ph.D. thesis, Department of Mechanical Engineering, Leland Stanford Junior University Stanford, CA.
12.
Emiris
,
I. Z.
,
1994
, “
Sparse Elimination and Applications in Kinematics
,” Ph.D. thesis, University of California at Berkeley Berkeley, CA.
13.
Emiris
,
I. Z.
, and
Mourrain
,
B.
,
1996
,
Polynomial System Solving and the Case of the Six-Atom Molecule
. Paper No. 3075, INRIA. Available at: http://hal.inria.fr/inria-00073617/
14.
Morgan
,
A.
,
1987
,
Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems
,
Prentice-Hall, Inc. Englewood Cliffs, NJ.
15.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1990
, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
59
68
.10.1115/1.2912579
16.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
, Society for Industrial and Applied Mathematics Philadelphia, PA.
17.
Zulehner
,
W.
,
1988
, “
A Simple Homotopy Method for Determining All Isolated Solutions to Polynomial Systems
,”
Math. Comput.
,
50
(
181
), pp.
167
177
.10.1090/S0025-5718-1988-0917824-7
18.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
,
2002
, “
Advances in Polynomial Continuation for Solving Problems in Kinematics
,”
Proceedings of DETC’02, ASME Design Engineering Technical Conferences and Computer and Information in Engineering Conference Montreal, Canada, September 29–October 2, 2002
.
19.
Li
,
T. Y.
,
1999
, “
Solving Polynomial Systems by Polyhedral Homotopies
,”
Taiwan. J. Math.
,
3
(
3
), pp.
251
279
.
20.
Li
,
T. Y.
,
2003
, “Numerical Solution of Polynomial Systems by Homotopy Continuation Methods,”
Handbook of Numerical Analysis
, Vol.
XI
,
North-Holland
, Netherlands, pp.
209
304
.
21.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Singapore
.
22.
Huber
,
B.
, and
Sturmfels
,
B.
,
1995
, “
A Polyhedral Method for Solving Sparse Polynomial Systems
,”
Math. Comput.
,
64
(
212
), pp.
1541
1555
.10.1090/S0025-5718-1995-1297471-4
23.
Viquerat
,
A.
,
2011
, “
Polynomial Continuation in the Design of Deployable Structures
”. Ph.D. thesis, University of Cambridge, Cambridge, UK.
24.
MATLAB
,
2010
. version 7.10.0 (R2010a), The MathWorks Inc., Natick, MA.
25.
Tibert
,
G.
,
2002
, “
Deployable Tensegrity Structures for Space Applications
,” Ph.D. thesis, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden.
26.
Crawford
,
R. F.
,
Hedgepeth
,
J. M.
, and
Preiswerk
,
P. R.
,
1975
, “
Spoked Wheels to Deploy Large Surfaces in Space: Weight Estimates for Solar Arrays
,” Canadian Aeronautics and Space Institute and American Institute of Aeronautics and Astronautics, Joint Meeting, Toronto, Canada, NASA, Washington, DC.
27.
Crawford
,
R. F.
,
Hedgepeth
,
J. M.
, and
Preiswerk
,
P. R.
,
1975
, “
Spoked Wheels to Deploy Large Surfaces in Space-Weight Estimates for Solar Arrays
,” Tech. Rep. NASA-CR-2347; ARC-R-1004, NASA, Washington, DC.
28.
Gao
,
T.
, and
Li
,
T.-Y.
,
2003
, “
Mixed Volume Computation for Semi-Mixed Systems
,”
Discrete Comput. Geom.
,
29
(
2
), pp.
257
277
.10.1007/s00454-002-2837-x
29.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
J. Mech. Eng. Sci.
,
220
(
C
), pp.
1045
1056
.10.1243/09544062JMES245
30.
Laloi
,
N.
,
1999
, “
Analytical and Experimental Study of a New Type of Hinges
,” Tech. rep., Deployable Structures Laboratory, Dept. of Engineering, University of Cambridge, Cambridge, UK.
31.
Pellegrino
,
S.
,
Green
,
C.
,
Guest
,
S. D.
, and
Watt
,
A.
,
2000
,
SAR Advanced Deployable Structure
. Tech. rep., University of Cambridge Department of Engineering, Cambridge, UK.
You do not currently have access to this content.