We transfer the basic idea of bonds, introduced by Hegedüs, Schicho, and Schröcker for overconstrained closed chains with rotational joints, to the theory of self-motions of parallel manipulators of Stewart Gough (SG) type. Moreover, we present some basic facts and results on bonds and demonstrate the potential of this theory on the basis of several examples. As a by-product we give a geometric characterization of all SG platforms with a pure translational self-motion and of all spherical three-degrees of freedom (DOF) RPR manipulators with self-motions.

References

References
1.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H.-P.
,
2012
, “
Bond Theory and Closed 5R Linkages
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Husty
, eds., Springer, New York, pp.
221
228
.
2.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H.-P.
, 2013, “
The Theory of Bonds: A New Method for the Analysis of Linkages
,”
Mech. Mach. Theory
,
70
, pp. 407–424.
3.
Borel
,
E.
,
1908
, “
Mémoire sur les Déplacements à Trajectoires Sphériques
,”
Mémoire Présenteés par Divers Savants à l'Académie des Sciences de l'Institut National de France
33
(
1
), pp.
1
128
.
4.
Bricard
,
R.
,
1906
, “
Mémoire sur les Déplacements à Trajectoires Sphériques
,”
J. Ec. Polytech. (Paris)
,
11
, pp.
1
96
.
5.
Husty
,
M.
,
2000
, “
E. Borel's and R. Bricard's Papers on Displacements With Spherical Paths and their Relevance to Self-Motions of Parallel Manipulators
,”
International Symposium on History of Machines and Mechanisms
, M. Ceccarelli, ed., Kluwer, Dordrecht, Netherlands, pp.
163
172
.
6.
Karger
,
A.
,
2003
, “
Architecture Singular Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1149
1164
.10.1016/S0094-114X(03)00064-8
7.
Nawratil
,
G.
,
2008
, “
On the Degenerated Cases of Architecturally Singular Planar Parallel Manipulators
,”
J. Geom. Graph.
,
12
(
2
), pp.
141
149
. Available at: http://www.heldermann.de/JGG/jggcover.htm
8.
Röschel
,
O.
, and
Mick
,
S.
,
1998
, “
Characterisation of Architecturally Shaky Platforms
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
and
M. L.
Husty
, eds.,
Kluwer
, Dordrecht, Netherlands, pp.
465
474
.
9.
Wohlhart
,
K.
,
2010
, “
From Higher Degrees of Shakiness to Mobility
,”
Mech. Mach. Theory
,
45
(
3
), pp.
467
476
.10.1016/j.mechmachtheory.2009.10.006
10.
Karger
,
A.
,
2008
, “
Architecturally Singular Non-Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
43
(
3
), pp.
335
346
.10.1016/j.mechmachtheory.2007.03.006
11.
Nawratil
,
G.
,
2009
, “
A New Approach to the Classification of Architecturally Singular Parallel Manipulators
,”
Computational Kinematics
,
A.
Kecskemethy
and
A.
Müller
, eds.,
Springer
,
New York
, pp.
349
358
.
12.
Nawratil
,
G.
,
2012
, “
Review and Recent Results on Stewart Gough Platforms With Self-Motions
,”
Appl. Mech. Mater.
,
162
, pp.
151
160
.10.4028/www.scientific.net/AMM.162.151
13.
Husty
,
M. L.
,
1996
, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory
,
31
(
4
), pp.
365
380
.10.1016/0094-114X(95)00091-C
14.
Husty
,
M.
,
Karger
,
A.
,
Sachs
,
H.
, and
Steinhilper
,
W.
,
1997
,
Kinematik und Robotik
,
Springer
,
New York
.
15.
Husty
,
M. L.
, and
Karger
,
A.
,
2002
, “
Self Motions of Stewart-Gough Platforms: An Overview
,”
Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
, C. M. Gosselin and I. Ebert-Uphoff, eds., Quebec, Canada, pp.
131
141
.
16.
Nawratil
,
G.
,
2012
, “
Self-Motions of Planar Projective Stewart Gough Platforms
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
27
34
.
17.
Borras
,
J.
,
Thomas
,
F.
, and
Torras
,
C.
,
2010
, “
Singularity-Invariant Leg Rearrangements in Doubly-Planar Stewart-Gough Platforms
,”
Proceedings of Robotics Science and Systems
, Zaragoza, Spain.
18.
Mielczarek
,
S.
,
Husty
,
M. L.
, and
Hiller
,
M.
,
2002
, “
Designing a Redundant Stewart-Gough Platform With a Maximal Forward Kinematics Solution Set
,”
Proceedings of the International Symposium of Multibody Simulation and Mechatronics
, Mexico City, Mexico.
19.
Nawratil
,
G.
, “
On Elliptic Self-Motions of Planar Projective Stewart Gough Platforms
,”
Trans. Can. Soc. Mech. Eng.
(in press).
20.
Nawratil
,
G.
,
2013
, “
Non-Existence of Planar Projective Stewart Gough Platforms With Elliptic Self-Motions
,”
Computational Kinematics
,
F.
Thomas
and
A.
Perez Garcia
, eds.,
Springer
,
New York
, pp.
41
48
.
21.
Brunnthaler
,
K.
,
Schröcker
,
H.-P.
, and
Husty
,
M.
,
2006
, “
Synthesis of Spherical Four-Bar Mechanisms Using Spherical Kinematic Mapping
,”
Advances in Robot Kinematics: Mechanisms and Motion
,
J.
Lenarcic
and
B.
Roth
, eds.,
Springer
,
New York
, pp.
377
384
.
22.
Duporcq
,
E.
,
1898
, “
Sur la Correspondance Quadratique et Rationnelle de Deux Figures Planes et sur un Déplacement Remarquable
,”
C. R. Math. Acad. Sci.
,
126
, pp.
1405
1406
.
23.
Karger
,
A.
,
1998
, “
Architecture Singular Parallel Manipulators
,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
and
M. L.
Husty
, eds.,
Kluwer
, Dordrecht, Netherlands, pp.
445
454
.
24.
Nawratil
,
G.
, “
Correcting Duporcq's Theorem
,” (to be published).
25.
Faugère
,
J. C.
, and
Lazard
,
D.
,
1995
, “
Combinatorial Classes of Parallel Manipulators
,”
Mech. Mach. Theory
,
30
(
6
), pp.
765
776
.10.1016/0094-114X(94)00069-W
You do not currently have access to this content.