This paper describes the design, fabrication, experimental testing and performance optimization of the morphology of a flapping wing for use on a robot capable of aerial and aquatic modes of locomotion. The focus of the optimization studies is that of wing design for aquatic propulsion. Inspiration for the research stems from numerous avian species which use a flapping wing for the dual purpose of locomotion (propulsion) in both air and water. The main aim of this research is to determine optimal kinematic parameters for marine locomotion that maximize nondimensionalized performance measures (e.g., propulsive efficiency), derived from analysis of avian wing morphing mechanisms that balance competing demands of both aerial and aquatic movement. Optimization of the kinematic parameters enables the direct comparison between outstretched (aerial) and retracted (aquatic) wing morphologies and permits trade-off studies in the design space for future robotic vehicles. Static foils representing the wing in both an extended and retracted orientation have been manufactured and subsequently subjected to testing over a range of kinematics. Details of the purpose built 2 degree-of-freedom (dof) flapping mechanism are presented. The gathered results enable validation of previously developed numerical models as well as quantifying achievable performance measures. This research focuses on the mechanical propulsive efficiencies and thrust coefficients as key performance measures whilst simultaneously considering the required mechanical input torques and the associated thrust produced.

References

References
1.
McIntosh
,
S. H.
,
Agrawal
,
S. K.
, and
Khan
,
Z.
,
2006
, “
Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle
,”
IEEE/ASME Trans. Mech.
,
11
(
2
), pp.
145
153
.10.1109/TMECH.2006.871089
2.
Granosik
,
G.
,
2005
, “
Integrated Joint Actuator for Serpentine Robots
,”
IEEE/ASME Trans. Mech.
,
10
(
5
), pp.
473
481
.10.1109/TMECH.2005.856222
3.
Liu
,
F.
,
Lee
,
K.
, and
Yang
,
C.
,
2011
, “
Hydrodynamics of an Undulating Fin for a Wave-Like Locomotion System Design
,”
IEEE/ASME Trans. Mech.
, pp.
1
9
.
4.
Bachmann
,
R. J.
,
Boria
,
F. J.
,
Vaidyanathan
,
R.
,
Ifju
,
P. G.
, and
Quinn
,
R. D.
,
2009
, “
A Biologically Inspired Micro-Vehicle Capable of Aerial and Terrestrial Locomotion
,”
Mech. Mach. Theory
,
44
(
3
), pp.
513
526
.10.1016/j.mechmachtheory.2008.08.008
5.
Ijspeert
,
A. J.
,
Crespi
,
A.
,
Ryczko
,
D.
, and
Cabelguen
,
J.
,
2007
, “
From Swimming to Walking With a Salamander Robot Driven by a Spinal Cord Model
,”
Science
,
315
(
5817
), pp.
1416
1420
.10.1126/science.1138353
6.
Kovač
,
M.
,
Germann
,
J.
,
Hürzeler
,
C.
,
Siegwart
,
R. Y.
, and
Floreano
,
D.
,
2010
, “
A Perching Mechanism for Micro Aerial Vehicles
,”
J. Micro-Nano Mech.
,
5
(
3–4
), pp.
77
91
.10.1007/s12213-010-0026-1
7.
Georgiades
,
C.
,
German
,
A.
, and
Hogue
,
A.
,
2004
, “
AQUA: An Aquatic Walking Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
3525
3531
.
8.
Harkins
,
R.
,
Dunbar
,
T.
,
Boxerbaum
,
A. S.
,
Bachmann
,
R. J.
,
Quinn
,
R. D.
,
Burgess
,
S. C.
, and
Vaidyanathan
,
R.
,
2009
, “
Confluence of Active and Passive Control Mechanisms Enabling Autonomy and Terrain Adaptability for Robots in Variable Environments
,”
IAENG Transactions on Electrical and Electronics Engineering
, Vol.
I
,
138
149
.
9.
Lock
,
R. J.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2012
, “
Design and Experimental Verification of a Biologically Inspired
,”
IEEE International Conference on Biomedical Robotics and Biomechatronics
, pp.
681
689
.
10.
Licht
,
S.
,
Hover
,
F.
, and
Triantafyllou
,
M. S.
,
2004
, “
Design of a Flapping Foil Underwater Vehicle
,”
IEEE J. Ocean. Eng.
,
21
(
3
), pp.
311
316
.
11.
Georgiades
,
C.
,
Nahon
,
M.
, and
Buehler
,
M.
,
2009
, “
Simulation of an Underwater Hexapod Robot
,”
Ocean Eng.
,
36
(
1
), pp.
39
47
.10.1016/j.oceaneng.2008.10.005
12.
Gaston
,
A. J.
,
1998
,
The Auks: Bird Families of the World
,
Oxford University Press
,
Oxford, UK
.
13.
Lovvorn
,
J. R.
,
Croll
,
D. A.
, and
Liggins
,
G. A.
,
1999
, “
Mechanical versus Physiological Determinants of Swimming Speeds in Diving Brünnich's Guillemots
,”
J. Exp. Biol.
,
202
, pp.
1741
1752
.
14.
Pennycuick
,
C. J.
,
1987
, “
Flight of Auks (Alcidae) and Other Northern Seabirds Compared With Southern Procellariiformes: Ornithodolite Observations
,”
J. Exp. Biol.
,
128
, pp.
335
347
.
15.
Lock
,
R. J.
,
Vaidyanathan
,
R.
,
Burgess
,
S. C.
, and
Loveless
,
J.
,
2010
, “
Development of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles Through Empirical and Numerical Modelling of the Common Guillemot, Uria Aalge
,”
Bioinspiration Biomimetics
,
5
(
4
), pp.
1
16
.10.1088/1748-3182/5/4/046001
16.
Vogel
,
S.
,
1996
,
Life in Moving Fluids
,
Princeton University Press
,
Princeton, NJ
.
17.
Johansson
,
L. C.
,
2002
, “
Kinematics of Diving Atlantic Puffins (Fratercula arctica L.): Evidence for an Active Upstroke
,”
J. Exp. Biol.
,
205
, pp.
371
378
.
18.
Read
,
D.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(
1
), pp.
163
183
.10.1016/S0889-9746(02)00115-9
19.
Beal
,
D. N.
, and
Bandyopadhyay
,
P. R.
,
2007
, “
A Harmonic Model of Hydrodynamic Forces Produced by a Flapping Fin
,”
Exp. Fluids
,
43
(
5
), pp.
675
682
.10.1007/s00348-007-0352-9
20.
Madangopal
,
R.
, and
Agrawal
,
S. K.
,
2006
, “
Energetics-Based Design of Small Flapping-Wing Micro Air Vehicles
,”
IEEE/ASME Trans. Mech.
,
11
(
4
), pp.
433
438
.10.1109/TMECH.2006.878525
21.
Lock
,
R. J.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2010
, “
Development of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles
,”
IEEE International Conference on Intelligent Robots and Systems
, pp.
3404
3409
.10.1109/IROS.2010.5650943
22.
Lock
,
R. J.
,
Vaidyanathan
,
R.
, and
Burgess
,
S. C.
,
2010
, “
Mission Based Optimization of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles
,”
11th Conference—Towards Autonomous Robotic Systems
, Plymouth, UK, pp.
140
147
. Available at: http://www.tech.plym.ac.uk/soc/staff/guidbugm/taros2010/slides/Lock%20-%20TAROS%202010.pdf
23.
Techet
,
A. H.
,
2008
, “
Propulsive Performance of Biologically Inspired Flapping Foils at High Reynolds Numbers
,”
J. Exp. Biol.
,
211
(
Pt 2
), pp.
274
279
.10.1242/jeb.012849
24.
Nelson
,
B.
,
1978
,
The Gannet
,
T. & A.D. Poyser Ltd.
,
Hertfordshire, UK
.
25.
Abbott
,
I. H.
, and
Von Doenhoff
,
A. E.
,
1959
,
Theory of Wing Sections
,
Dover Publications, Inc.
,
New York
.
26.
Lovvorn
,
J.
,
Liggins
,
G. A.
,
Borstad
,
M. H.
,
Calisal
,
S. M.
, and
Mikkelsen
,
J.
,
2001
, “
Hydrodynamic Drag of Diving Birds: Effects of Body Size, Body Shape and Feathers at Steady Speeds
,”
J. Exp. Biol.
,
204
, pp.
1547
1557
.
27.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.10.1038/35104644
28.
29.
Bellingham
,
J. G.
,
Zhang
,
Y.
,
Kerwin
,
J. E.
,
Erikson
,
J.
,
Hobson
,
B.
,
Kieft
,
B.
,
Godin
,
M.
, et al. .,
2010
,
Efficient Propulsion for the Tethys Long-Range Autonomous Underwater Vehicle
,” 2010 IEEE/OES Autonomous Underwater Vehicles, IEEE, pp.
1
7
.
You do not currently have access to this content.