The typical nonorthogonal coordinate measuring machine is the portable coordinate measuring machine (PCMM), which is widely applied in manufacturing. In order to improve the measurement accuracy of PCMM, structural designing, data processing, mathematical modeling, and identification of parameters of PCMM, which are essential for the measurement accuracy, should be taken into account during the machine development. In this paper, a kind of PCMM used for detecting the crucial dimension of automobile chassis has been studied and calibrated. The Denavit–Hartenberg (D–H) kinematic modeling method has often been used for modeling traditional robot, but the D–H error representation is ill-conditioned when it is applied to represent parallel joints. A modified four-parameter model combined with D–H model is put forward for this PCMM. Based on the kinematic model, Gauss–Newton method is applied for calibrating the kinematic parameters. The experimental results indicate the improvement of measuring accuracy and the effectiveness of the PCMM based on the proposed method.

References

1.
Minh
,
T.
, and
Phil
,
W.
,
2012
, “
An Improved Kinematic Model for Calibration of Serial Robots Having Closed-Chain Mechanisms
,”
Robotica
,
30
, pp.
963
971
.10.1017/S0263574711001184
2.
Ramua
,
P.
,
Yagüeb
,
J. A.
,
Hockena
,
R. J.
, and
Millera
,
J.
,
2011
, “
Development of a Parametric Model and Virtual Machine to Estimate Task Specific Measurement Uncertainty for a Five-Axis Multi-Sensor Coordinate Measuring Machine
,”
Precis. Eng.
,
35
, pp.
431
439
.10.1016/j.precisioneng.2011.01.003
3.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Low Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
4.
Meggiolaro
,
M. A.
, and
Dubowsky
,
S.
,
2000
, “
An Analytical Method to Eliminate the Redundant Parameters in Robot Calibration
,”
Proceedings of the IEEE Conference on Robotics and Automation, San Francisco, CA
, April 24–28,
IEEE
,
New York
, Vol. 4, pp.
3609
3615
.
5.
Veitschegger
,
W. K.
, and
Wu
,
C.-H.
,
1987
, “
A Method for Calibrating and Compensating Robot Kinematic Errors
,”
Proceedings of the IEEE Conference on Robotics and Automation, March
,
IEEE
,
New York
, pp.
39
44
.
6.
Veitschegger
,
W. K.
, and
Wu
,
C.-H.
,
1988
, “
Robot Calibration and Compensation
,”
IEEE J. Rob. Autom.
,
4
(
6
), pp.
643
656
.10.1109/56.9302
7.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J.
,
2009
, “
Design and kinematic analysis of a novel prism deployable mechanism
,”
Mechanism and Machine Theory
,
36
(
5
), pp.
35
49
. Available at: http://www.sciencedirect.com/science/journal/0094114X
8.
Zhuang
,
H.
,
Roth
,
Z. S.
, and
Hamano
,
F.
,
1992
, “
A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators
,”
IEEE Trans. Rob. Autom.
,
8
(
4
), pp.
451
463
.10.1109/70.149944
9.
Ziegert
,
J.
, and
Datseris
,
P.
,
1988
. “
Basic Considerations for Robot Calibration
,”
Proceedings of the IEEE Conference on Robotics and Automation, March, Philadelphia, PA
,
IEEE
,
New York
, pp.
932
938
.
10.
Roberts
,
K. S.
,
1988
, “
A New Representation for a Line
,”
Proceedings of the International Conference on Computer Vision and Pattern Recognition
,
Ann Harbor, MI
, June 5–9, pp.
635
640
.
11.
Stone
,
H. W.
,
1987
,
Kinematic Modeling, Identification and Control Robotic Manipulators
,
Kluwer
,
New York
.
12.
Roth
,
Z. S.
,
Mooring
,
B. W.
, and
Ravani
,
B.
,
1987
, “
An Overview of Robot Calibration
,”
IEEE J. Rob. Autom.
,
3
(
5
), pp.
377
384
.10.1109/JRA.1987.1087124
13.
Judd
,
R. P.
, and
Knasinski
,
A. B.
,
1990
, “
A Technique to Calibrate Industrial Robots With Experimental Verification
,”
IEEE Trans. Rob. Autom.
,
6
(
1
), pp.
20
30
.10.1109/70.88114
14.
Karpińska
,
J.
, and
Tchoń
,
K.
,
2012
, “
Performance-Oriented Design of Inverse Kinematics Algorithms: Extended Jacobian Approximation of the Jacobian Pseudo-Inverse
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021008
.10.1115/1.4006192
15.
Bai
,
Y.
, and
Wang
,
D.
,
2006
, “
Fuzzy Logic for Robots Calibration—Using Fuzzy Interpolation Technique in Modeless Robot Calibration
,”
Advanced Fuzzy Logic Technologies in Industrial Applications
,
Y.
Bai
,
H.
Zhuang
, and
D.
Wang
, eds.,
Springer-Verlag
,
London
.
16.
Bai
,
Y.
,
2007
, “
On the Comparison of Model-Based and Modeless Robotic Calibration Based on a Fuzzy Interpolation Method
,”
Int. J. Adv. Manuf. Technol.
,
31
, pp.
1243
1250
.10.1007/s00170-005-0278-4
17.
Bai
,
Y.
, and
Wang
,
D.
,
2003
, “
Improve the Position Measurement Accuracy Using a Dynamic On-Line Fuzzy Interpolation Technique
,”
IEEE International Symposium on Computational Intelligence for Measurement Systems and Applications
,
IEEE
,
New York
, pp.
227
232
.
18.
Wang
,
X. Y.
,
Liu
,
S. G.
,
Zhang
,
G. C.
,
Wang
,
B.
, and
Guo
,
L. F.
,
2007
, “
Calibration Technology of the Articulated Arm Flexible CMM
,”
ISMTII2007
, pp.
731
734
.
19.
Gao
,
G.
,
Wang
,
W.
,
Lin
,
K.
, and
Chen
,
Z.
,
2009
, “
Structural Parameter Identification for Articulated ARM Coordinate Measuring Machines
,”
International Conference on Measuring Technology and Mechatronics Automation
,
Zhangjiajie, Hunan
, April 11–12, pp.
128
131
.
20.
Santolaria
,
J.
,
Aguilar
,
J.-J.
,
Yaguee
,
J.-A.
, and
Pastor
,
J.
,
2008
, “
Kinematic Parameter Estimation Technique for Calibration and Repeatability Improvement of Articulated Arm Coordinate Measuring Machines
,”
Precis. Eng.
,
32
, pp.
251
268
.10.1016/j.precisioneng.2007.09.002
21.
Jin
,
Q.
,
2010
, “
On a Regularized Levenberg-Marquardt Method for Solving Nonlinear Inverse Problems
,”
Numer. Math.
,
115
(
2
), pp.
229
259
.10.1007/s00211-009-0275-x
You do not currently have access to this content.