S-(nS)PU-SPU and S-(nS)PU-2SPU are two types of nonholonomic wrists that are generated from the “ordinary” wrists of type S-3SPU (fully parallel wrists (FPW)), by replacing a spherical pair (S) with a nonholonomic spherical pair (nS) according to the rules stated by Grosch et al. (2010, “Generation of Under-Actuated Manipulators With Nonholonomic Joints From Ordinary Manipulators,” ASME J. Mech. Rob., 2(1), p. 011005). Position analysis, controllability, and path planning of these two wrist types have been addressed and solved in two previous papers (Di Gregorio, R., 2012, “Type Synthesis of Underactuated Wrists Generated From Fully-Parallel Wrists,” ASME J. Mech. Des., 134(12), p. 124501 and Di Gregorio, R., 2012, “Position Analysis and Path Planning of the S-(nS)PU-SPU and S-(nS)PU-2SPU Underactuated Wrists,” ASME J. Mech. Rob., 4(2), p. 021006) of this author, which demonstrated that simple closed-form formulas are sufficient to control their configuration and to implement their path planning. Their kinetostatics and singularity analysis have not been addressed, yet; and they are studied in this paper. Here, the singularity analysis will reveal, for the first time, the existence of a somehow novel type of singularities, here named “jamming singularity,” that jams the platform motion in some directions and that is also present in all the parallel manipulators with SPU limbs (e.g., Gough-Stewart platforms) where it can be considered a particular type of “leg singularity.” Moreover, the static analysis will demonstrate that the reaction forces due to the static friction, in the nonholonomic constraint, can be controlled in the same way as the generalized forces exerted by the actuators, and that the possible slippage, in the same constraint, can be easily monitored and compensated.

References

References
1.
O'Reilly
,
O. M.
,
2008
,
Intermediate Dynamics for Engineers
,
Cambridge University Press
,
New York, NY
.
2.
Rabier
,
P. J.
, and
Rheinboldt
,
W. C.
,
2000
, “
Nonholonomic Motion of Rigid Mechanical Systems From a DAE Viewpoint
,” SIAM, Philadelphia, PA.
3.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
4.
Cortès
Monforte
,
J.
,
2002
,
Geometric, Control and Numerical Aspects of Nonholonomic Systems
,
Springer
,
New York, NY
.
5.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer
,
New York, NY
.
6.
Chung
,
W.
,
2004
,
Nonholonomic Manipulators
,
Springer
,
New York, NY
.
7.
Choset
,
H.
,
Lynch
,
K. M.
,
Hutchinson
,
S.
,
Kantor
,
G.
,
Burgard
,
W.
,
Kavraki
,
L. E.
, and
Thrun
,
S.
,
2005
,
Principles of Robot Motion: Theory, Algorithms, and Implementations
,
MIT Press
,
Boston, MA
.
8.
Tchon
,
K.
,
Jakubiak
,
J.
,
Grosch
,
P.
, and
Thomas
,
F.
,
2012
, “
Motion Planning for Parallel Robots With Non-Holonomic Joints
,”
Latest Advances in Robot Kinematics
,
J.
Lenarcic
and
M.
Husty
, eds.,
Springer
,
New York
, pp.
115
123
.
9.
Grosch
,
P.
,
Di Gregorio
,
R.
, and
Thomas
,
F.
,
2010
, “
Generation of Under-Actuated Manipulators With Nonholonomic Joints From Ordinary Manipulators
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011005
.10.1115/1.4000527
10.
Di Gregorio
,
R.
,
2012
, “
Type Synthesis of Underactuated Wrists Generated From Fully-Parallel Wrists
,”
ASME J. Mech. Des.
,
134
(
12
), p.
124501
.10.1115/1.4007399
11.
Di Gregorio
,
R.
,
2012
, “
Position Analysis and Path Planning of the S-(nS)PU-SPU and S-(nS)PU-2SPU Underactuated Wrists
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021006
.10.1115/1.4006191
12.
Di Gregorio
,
R.
,
2012
, “
Kinematic Analysis of the (nS)-2SPU Underactuated Parallel Wrist
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031006
.10.1115/1.4006832
13.
Den Hartog
,
J. P.
,
1948
,
Mechanics
,
Dover Publications, Inc.
,
New York
.
14.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Architecture Singularities of Platform Manipulators
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
, pp.
1542
1547
.
15.
Gosselin
,
C. M.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
16.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.10.1115/1.2826720
17.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Claredon Press
,
Oxford, UK
.
18.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2007
,
Robots and Screw Theory
,
Oxford University Press
,
Oxford, UK
.
19.
Zlatanov
,
D.
,
Zoppi
,
M.
, and
Gosselin
,
C. M.
,
2004
, “
Singularities and Mobility of a Class of 4-DOF Mechanisms
,”
On Advances in Robot Kinematics
,
J.
Lenarcic
and
C.
Galletti
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
321
328
.
20.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Rob
,
25
(
4
), pp.
757
770
.10.1109/TRO.2009.2020353
21.
Di Gregorio
,
R.
,
2008
, “
An Exhaustive Scheme for the Singularity Analysis of Three-DOF Parallel Manipulators
,”
Proceedings of the 17th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2008)
, Sept. 15–17,
Ancona, Italy
.
22.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1993
, “
Echelon Form Solution of Direct Kinematics for the General Fully-Parallel Spherical Wrist
,”
Mech. Mach. Theory
,
28
(
4
), pp.
553
561
.10.1016/0094-114X(93)90035-T
23.
Wang
,
J.
, and
Gosselin
,
C. M.
,
2004
, “
Singularity Loci of a Special Class of Spherical 3-DOF Parallel Mechanisms With Prismatic Actuators
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
319
326
.10.1115/1.1649970
24.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Architecture Singularities of Platform Manipulators
,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
, pp.
1542
1547
.
You do not currently have access to this content.