This paper proposes a novel deployable hexahedron mobile mechanism that is rigidly linked by only prismatic joints. The mechanism that is a completely symmetrical structure can always keep the walking capability when any of its six faces of the hexahedron touches the ground. It can roll at any stable state. The configuration constructed by only prismatic joints makes it expand and contract as a deployable structure. In this paper, a method for constructing a deployable hexahedron mobile mechanism is proposed. The stability analysis and dynamic simulation of the walking and rolling are carried out. The necessary condition of tipping motion and the speed analysis of two different rolling gaits are studied in details. A binary control strategy is adopted to simplify the complexity of the control system. A pneumatic cylinder is chosen to be the binary actuator. A prototype composed of 180 pneumatic cylinders was fabricated. The validity of the walking and tipping functions are verified by the experimental results.

References

References
1.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
,
1994
, “
A Novel Concentric Multilink Spherical Joint With Parallel Robotics Applications
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, San Francisco, CA, May 8–13, IEEE, New York, NY, 2, pp.
1267
1272
.
2.
Hamlin
,
G. J.
, and
Sanderson
,
A. C.
,
1997
, “
Tetrobot: A Modular Approach to Parallel Robotics
,”
IEEE Robot. Autom. Mag.
,
4
(
1
), pp.
42
50
.10.1109/100.580984
3.
Clark
,
P. E.
,
Rilee
,
M. L.
,
Curtis
,
S. A.
,
Truszkowski
,
W.
,
Marr
,
G.
,
Cheung
,
C.
, and
Rudisill
,
M.
,
2004
, “
BEES for ANTS: Space Mission Applications for the Autonomous Nanotechnology Swarm
,”
Proceedings of the AIAA 1st Intelligent Systems Technical Conference
, Chicago, IL, Sept. 20–22, Session 29-IS-13-02.
4.
Abrahantes
,
M.
,
Silver
,
A.
, and
Wendt
,
L.
,
2007
, “
Modeling and Gait Design of a 12-Tetrahedron Walker Robot
,” 39th Southeastern Symposium on System Theory, Macon, GA, March 4–6, pp.
21
25
.
5.
Abrahantes
,
M.
,
Littio
,
D.
,
Silver
,
A.
, and
Wendt
,
L.
,
2008
, “
Modeling and Gait Design of a 4-Tetrahedron Walker Robot
,” 40th Southeastern Symposium on System Theory, New Orleans, LA, March 16–18, pp.
269
273
.
6.
Clark
,
P. E.
,
Curtis
,
S. A.
, and
Rilee
,
M. L.
,
2011
, “
A New Paradigm for Robotic Rovers
,”
Phys. Procedia
,
20
, pp.
308
318
.10.1016/j.phpro.2011.08.028
7.
Curtis
,
S. A.
,
2008
, “
ANTS as an Architectural Pathway to Artificial Life
,”
NASA Goddard Space Flight Center
, http://ants.gsfc.nasa.gov/index.html
9.
Marsh
,
R.
, and
Ogaard
,
K.
,
2008
, “
12-TET Walker Using a Quadrupedal Walking Algorithm
,” Proceedings of the International Conference on Artificial Intelligence, Las Vegas, Nevada, pp.
680
685
.
10.
Izadi
,
M.
,
Mahjoob
,
M. J.
,
Soheilypour
,
M.
, and
Vahid-Alizadeh
,
H.
,
2010
, “
A Motion Planning for Toppling-Motion of a TET Walker
,”
The 2nd International Conference on Computer and Automation Engineering (ICCAE)
, Singapore, Feb. 26–28, 2, pp.
34
39
.
11.
Zhang
,
L. G.
,
Bi
,
S. S.
, and
Cai
,
Y. R.
,
2010
, “
Design and Motion Analysis of Tetrahedral Rolling Robot
,”
The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, IEEE, New York, NY, pp.
502
507
.
12.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
13.
Bohigas
,
O.
,
Manubens
,
M.
, and
Ros
,
L.
,
2012
, “
A Linear Relaxation Method for Computing Workspace Slices of the Stewart Platform
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011005
.10.1115/1.4007706
14.
Lu
,
Y.
,
Han
,
J.
,
Yu
,
J.
, and
Hu
,
B.
,
2010
, “
Kinematics Analysis of Some Linear Legs With Different Structures for Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011005
.10.1115/1.4002694
15.
Mavroidis
,
C.
, and
Roth
,
B.
,
1994
, “
Analysis and Synthesis of Overconstrained Mechanisms
,”
Proceedings of the 1994 ASME Design Technical Conferences
, DE-70, Minneapolis, MI, ASME, New York, NY, pp.
115
133
.
16.
Fang
,
Y. F.
, and
Tsaj
,
L. W.
,
2004
, “
Enumeration of a Class of Over-Constrained Mechanisms Using the Theory of Reciprocal Screws
,”
Mech. Mach. Theory
,
39
, pp.
1175
1187
.10.1016/j.mechmachtheory.2004.06.003
17.
Guo
,
S.
,
Qu
,
H. B.
, and
Fang
,
Y. F.
,
2012
, “
The DOF Degeneration Characteristics of Closed Loop Over-Constrained Mechanism
,”
Trans. Can. Soc. Mech. Eng.
,
36
(
1
), pp.
67
82
.
18.
Luck
,
K.
, and
Modler
,
K. H.
,
1990
,
Getriebetechnik—Analyse, Synthese, Optimierung
,
Springer-Verlag
,
Wien/New York
.
19.
Li
,
W. M.
,
Zhang
,
J. J.
, and
Gao
,
F.
,
2006
, “
P-CUBE, A Decoupled Parallel Robot Only With Prismatic Pairs
,”
Proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
, Beijing, China, August, ASME, New York, NY, pp.
1
4
.
20.
Agrawal
,
S. K.
,
Kumar
,
S.
, and
Yim
,
M.
,
2002
, “
Polyhedral Single Degree-of freedom Expanding Structures: Design and Prototypes
,”
ASME J. Mech. Des
,
124
(
3
), pp.
473
478
.10.1115/1.1480413
21.
Rus
,
D.
, and
Vona
,
M.
,
1999
, “
Self-Reconfiguration Planning With Compressible Unit Modules
,”
Proceedings of the 1999 IEEE International Conference on Robotics and Automation
, Detroit, MI, May 10–15, IEEE, New York, NY, 4, pp.
2513
2520
.
22.
Butler
,
Z.
,
Fitch
,
R.
, and
Rus
,
D.
,
2002
, “
Distributed Control for Unit-Compressible Robots: Goal-Recognition, Locomotion, and Splitting
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
418
430
.10.1109/TMECH.2002.806230
23.
Suh
,
J. W.
,
Homans
,
S. B.
, and
Yim
,
M.
,
2002
, “
Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robotics
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, IEEE, New York, NY, 4, pp.
4095
4101
.
24.
Vassilvitskii
,
S.
,
Yim
,
M.
, and
Suh
,
J.
,
2002
, “
A Complete, Local and Parallel Reconfiguration Algorithm for Cube Style Modular Robots
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, IEEE, New York, NY, 1, pp.
117
122
.
25.
Yim
,
M.
,
Shen
,
W.-M.
,
Salemi
,
B.
,
Rus
,
D.
,
Moll
,
M.
,
Lipson
,
H.
,
Klavins
,
E.
, and
Chirikjian
,
G. S.
,
2007
, “
Modular Self-Reconfigurable Robot Systems
,”
IEEE Robot. Autom. Mag.
,
14
, pp.
43
52
.10.1109/MRA.2007.339623
26.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.10.1115/1.2829470
27.
McGhee
,
R. B.
, and
Frank
,
A. A.
,
1968
, “
On the Stability Properties of Quadruped Creeping Gaits
,”
Math. Biosci.
,
13
(
1–2
), pp.
179
193
.10.1016/0025-5564(72)90033-8
28.
Bessonov
,
A. P.
, and
Umnov
,
N. V.
,
1973
, “
The Analysis of Gaits in Six-Legged Vehicle According to Their Static Stability
,”
Proceedings of the Symposium on Theory and Practice of Robots and Manipulators
, Udine, Italy, pp.
1
9
.
29.
Song
,
S. M.
, and
Waldron
,
K. J.
,
1989
,
Machine That Walk: The Adaptive Suspension Vehicle
,
MIT
,
Cambridge, MA
.
30.
Huang
,
Z.
,
2004
, “
The Kinematics and Type Synthesis of Lower-Mobility Parallel Manipulators
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
, Tianjin, China, pp.
65
76
.
31.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: a Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.10.1016/j.mechmachtheory.2004.12.014
32.
Huang
,
Z.
,
Liu
,
J. F.
, and
Li
,
Q. C.
,
2008
, “
Unified Methodology for Mobility Analysis Based on Screw Theory
,”
Smart Devices and Machines for Advanced Manufacturing
,
Springer-Verlag
,
Berlin, Germany
, pp.
49
78
.
33.
Lees
,
D. S.
, and
Chirikjian
,
G. S.
,
1996
, “
A Combinatorial Approach to Trajectory Planning for Binary Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Minneapolis, MN, April 22–28, IEEE, New York, NY, 3, pp.
2749
2754
.
34.
Sujan
,
V. A.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2001
, “
Lightweight Hyper-Redundant Binary Elements for Planetary Exploration Robots
,”
Proceedings of the IEEE/ASME Conference on Advanced Intelligent Mechatronics (AIM’01)
, Como, Italy, July 8–12, 2, IEEE, New York, NY, pp.
1273
1278
.
35.
Sujan
,
V. A.
, and
Dubowsky
,
S.
,
2004
, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
29
39
.10.1115/1.1637647
You do not currently have access to this content.