This paper investigates a new robust optimization framework based on density-convex reliability model and applies it to the dimensional optimization of magnetic resonance (MR) compatible surgical robot. As a justified tool for assessing reliability, the density-convex model is proposed on account of the reality that available data information is always insufficient. Based on the density-convex model, reliability functions of structure are constructed and taken as constraint conditions. The Euclidean norm of the sensitivity Jacobian matrix is selected as robust index and stated as the ultimate objective function. By using finite element method and artificial neural network (FEM–ANN) method, the explicit functions of mechanical response are achieved effectively. The optimization is solved by a gradient-based optimization algorithm in the framework. As an application of the above optimization framework, a prototype robot is designed and manufactured. Finally, a test experiment verifies the high reliability of the robot and further proves the validity and effectiveness of this proposed method.

References

References
1.
Gomes
,
P.
,
2011
, “
Surgical Robotics: Reviewing the Past, Analysing the Present, Imagining the Future
,”
Rob. Comput.-Integr. Manuf.
,
27
(
2
), pp.
261
266
.10.1016/j.rcim.2010.06.009
2.
Vaida
,
C.
,
Plitea
,
N.
,
Pisla
,
D.
, and
Gherman
,
B.
,
2013
, “
Orientation Module for Surgical Instrumentsła Systematical Approach
,”
Meccanica
,
48
(
1
), pp.
145
158
.10.1007/s11012-012-9590-x
3.
Thompson
,
J.
, and
Supple
,
W.
,
1973
, “
Erosion of Optimum Designs by Compound Branching Phenomena
,”
J. Mech. Phys. Solids
,
21
(
3
), pp.
135
144
.10.1016/0022-5096(73)90015-X
4.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2011
, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
133
(8), p.
044501
.10.1115/1.4004442
5.
Mashayekhi
,
M.
,
Salajegheh
,
E.
,
Salajegheh
,
J.
, and
Fadaee
,
M. J.
,
2012
, “
Reliability-Based Topology Optimization of Double Layer Grids Using a Two-Stage Optimization Method
,”
Struct. Multidisc. Optim.
,
45
(
6
), pp.
815
833
.10.1007/s00158-011-0744-6
6.
Saha
,
A.
, and
Ray
,
T.
,
2011
, “
Practical Robust Design Optimization Using Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
133
(10), p.
101012
.10.1115/1.4004807
7.
Diez
,
M.
, and
Peri
,
D.
,
2010
, “
Robust Optimization for Ship Conceptual Design
,”
Ocean Eng.
,
37
(
11
), pp.
966
977
.10.1016/j.oceaneng.2010.03.010
8.
Doltsinis
,
I.
, and
Kang
,
Z.
,
2004
, “
Robust Design of Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
23
), pp.
2221
2237
.10.1016/j.cma.2003.12.055
9.
Elishakoff
,
I.
,
1995
, “
Essay on Uncertainties in Elastic and Viscoelastic Structures: From AM Freudenthal's Criticisms to Modern Convex Modeling
,”
Comput. Struct.
,
56
(
6
), pp.
871
895
.10.1016/0045-7949(94)00499-S
10.
Moens
,
D.
, and
Vandepitte
,
D.
,
2006
, “
Recent Advances in Non-Probabilistic Approaches for Non-Deterministic Dynamic Finite Element Analysis
,”
Archiv. Comput. Methods Eng.
,
13
(
3
), pp.
389
464
.10.1007/BF02736398
11.
Venter
,
G.
, and
Haftka
,
R.
,
1999
, “
Using Response Surface Approximations in Fuzzy Set Based Design Optimization
,”
Struct. Optim.
,
18
(
4
), pp.
218
227
.10.1007/BF01223303
12.
Carreras
,
C.
, and
Walker
,
I. D.
,
2000
, “
Interval Methods for Improved Robot Reliability Estimation
,”
Proceedings of Reliability and Maintainability Symposium, Annual, IEEE
, pp.
22
27
.
13.
Zhang
,
A. R.
, and
Liu
,
X.
,
2012
, “
Research on the Non-Probabilistic Reliability Based on Interval Model
,”
Appl. Mech. Mater.
,
166
, pp.
1908
1912
.10.4028/www.scientific.net/AMM.166-169.1908
14.
Ben-Haim
,
Y.
,
1995
, “
A Non-Probabilistic Measure of Reliability of Linear Systems Based on Expansion of Convex Models
,”
Struct. Saf.
,
17
(
2
), pp.
91
109
.10.1016/0167-4730(95)00004-N
15.
Qiu
,
Z.
,
Ma
,
L.
, and
Wang
,
X.
,
2006
, “
Ellipsoidal-Bound Convex Model for the Non-Linear Buckling of a Column With Uncertain Initial Imperfection
,”
Int. J. Nonlinear Mech.
,
41
(
8
), pp.
919
925
.10.1016/j.ijnonlinmec.2006.07.001
16.
Ben-Haim
,
Y.
,
1994
, “
A Non-Probabilistic Concept of Reliability
,”
Struct. Saf.
,
14
(
4
), pp.
227
245
.10.1016/0167-4730(94)90013-2
17.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1995
, “
Discussion on: A Non-Probabilistic Concept of Reliability
,”
Struct. Saf.
,
17
(
3
), pp.
195
199
.10.1016/0167-4730(95)00010-2
18.
Lombardi
,
M.
, and
Haftka
,
R. T.
,
1998
, “
Anti-Optimization Technique for Structural Design Under Load Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
19
31
.10.1016/S0045-7825(97)00148-5
19.
Qiu
,
Z.
, and
Elishakoff
,
I.
,
2001
, “
Anti-Optimization Technique—A Generalization of Interval Analysis for Nonprobabilistic Treatment of Uncertainty
,”
Chaos, Solitons Fractals
,
12
(
9
), pp.
1747
1759
.10.1016/S0960-0779(00)00102-8
20.
Kang
,
Z.
,
Luo
,
Y.
, and
Li
,
A.
,
2011
, “
On Non-Probabilistic Reliability-Based Design Optimization of Structures With Uncertain-but-Bounded Parameters
,”
Struct. Saf.
,
33
(
3
), pp.
196
205
.10.1016/j.strusafe.2011.03.002
21.
Kang
,
Z.
, and
Luo
,
Y.
,
2009
, “
Non-Probabilistic Reliability-Based Topology Optimization of Geometrically Nonlinear Structures Using Convex Models
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41
), pp.
3228
3238
.10.1016/j.cma.2009.06.001
22.
Au
,
F.
,
Cheng
,
Y.
,
Tham
,
L.
, and
Zeng
,
G.
,
2003
, “
Robust Design of Structures Using Convex Models
,”
Comput. Struct.
,
81
(
28
), pp.
2611
2619
.10.1016/S0045-7949(03)00322-5
23.
Jiang
,
C.
,
Han
,
X.
, and
Liu
,
G.
,
2007
, “
Optimization of Structures With Uncertain Constraints Based on Convex Model and Satisfaction Degree of Interval
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
49
), pp.
4791
4800
.10.1016/j.cma.2007.03.024
24.
Jiang
,
C.
,
Han
,
X.
,
Lu
,
G.
,
Liu
,
J.
,
Zhang
,
Z.
, and
Bai
,
Y.
,
2011
, “
Correlation Analysis of Non-Probabilistic Convex Model and Corresponding Structural Reliability Technique
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
33
), pp.
2528
2546
.10.1016/j.cma.2011.04.007
25.
Pantelides
,
C. P.
, and
Ganzerli
,
S.
,
1998
, “
Design of Trusses Under Uncertain Loads Using Convex Models
,”
J. Struct. Eng.
,
124
(
3
), pp.
318
329
.10.1061/(ASCE)0733-9445(1998)124:3(318)
26.
Jiang
,
C.
,
Bi
,
R.
,
Lu
,
G.
, and
Han
,
X.
,
2013
, “
Structural Reliability Analysis Using Non-Probabilistic Convex Model
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
83
98
.10.1016/j.cma.2012.10.020
27.
Yanfang
,
Z.
,
Yanlin
,
Z.
, and
Yimin
,
Z.
,
2011
, “
Reliability Sensitivity Based on First-Order Reliability Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
225
(
9
), pp.
2189
2197
.10.1177/0954406211405938
28.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(1), p.
86
94
.10.1115/1.1825047
29.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2012
, “
Performance Indices for Collaborative Serial Robots With Optimally Adjusted Series Clutch Actuators
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021002
.10.1115/1.4005723
30.
Jiang
,
S.
,
Liu
,
S.
, and
Feng
,
W.
,
2011
, “
PVA Hydrogel Properties for Biomedical Application
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1228
1233
.10.1016/j.jmbbm.2011.04.005
You do not currently have access to this content.