A variable displacement hydraulic pump/motor with high efficiency at all operating conditions, including low displacement, is beneficial to multiple applications. Two major energy loss terms in conventional pumps are the friction and lubrication leakage in the kinematic joints. This paper presents the synthesis, analysis, and experimental validation of a variable displacement sixbar crank-rocker-slider mechanism that uses low friction pin joints instead of planar joints as seen in conventional variable pump/motor architectures. The novel linkage reaches true zero displacement with a constant top dead center position, further minimizing compressibility energy losses. The synthesis technique develops the range of motion for the base fourbar crank-rocker and creates a method of synthesizing the output slider dyad. It is shown that the mechanism can be optimized for minimum footprint and maximum stroke with a minimum base fourbar transmission angle of 30 deg and a resultant slider transmission angle of 52 deg. The synthesized linkage has a dimensionless stroke of 2.1 crank lengths with a variable timing ratio and velocity and acceleration profiles in the same order of magnitude as a comparable crank-slider mechanism. The kinematic and kinetic results from an experimental prototype linkage agree well with the model predictions.

References

References
1.
Williamson
,
C.
,
Zimmerman
,
J.
, and
Ivantysynova
,
M.
, 2008, “
Efficiency Study of an Excavator Hydraulic System Based on Displacement-Controlled Actuators
,”
Proceedings of the Bath/ASME Symposium on Fluid Power and Motion Control
.
2.
Li
,
P. Y.
,
Loth
,
E.
,
Simon
,
T. W.
,
Van de Ven
,
J. D.
, and
Crane
,
S. E.
,
2011
, “
Compressed Air Energy Storage for Offshore Wind Turbines
,” International Fluid Power Exposition, Las Vegas, NV.
3.
Ivantysyn
,
J.
, and
Ivantysynova
,
M.
,
2001
,
Hydrostatic Pumps and Motors
,
Academic Books International
,
New Delhi
.
4.
Wieczorek
,
U.
, and
Ivantysynova
,
M.
,
2002
, “
Computer Aided Optimization of Bearing and Sealing Gaps in Hydrostatic Machines—The Simulation Tool CASPAR
,”
Int. J. Fluid Power
,
3
(
1
), pp.
7
20
.
5.
Manring
,
N. D.
,
2003
, “
Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
200
205
.10.1115/1.1541632
6.
Inaguma
,
Y.
, and
Hibi
,
A.
,
2007
, “
Reduction of Friction Torque in Vane Pump by Smoothing Cam Ring Surface
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
221
(
5
), pp.
527
534
.10.1243/0954406JMES225
7.
Wang
,
S.
,
2012
, “
Improving the Volumetric Efficiency of the Axial Piston Pump
,”
ASME J. Mech. Des.
,
134
, p.
111001
.10.1115/1.4007361
8.
Grandall
,
D. R.
,
2010
, “
The Performance and Efficiency of Hydraulic Pumps and Motors
,” MSc. thesis, The University of Minnesota, Minneapolis, MN.
9.
Seeniraj
,
G. K.
, and
Ivantysynova
,
M.
, “
Impact of Valve Plate Design on Noise, Volumetric Efficiency and Control Effort in an Axial Piston Pump
,”
ASME 2006 International Mechanical Engineering Congress and Exposition, Fluid Power Systems and Technology
,
Chicago, IL
, ASME Paper No. IMECE2006-15001, Nov. 5–10, New York, pp.
77
84
.
10.
Tao
,
D. C.
, and
Krishnamoorthy
,
S.
,
1978
, “
Linkage Mechanism Adjustable for Variable Symmetrical Coupler Curves With a Double Point
,”
Mech. Mach. Theory
,
13
(
6
), pp.
585
591
.10.1016/0094-114X(78)90026-5
11.
Tao
,
D. C.
, and
Krishnamoorthy
,
S.
,
1978
, “
Linkage Mechanism Adjustable for Variable Coupler Curves With Cusps
,”
Mech. Mach. Theory
,
13
(
6
), pp.
577
583
.10.1016/0094-114X(78)90025-3
12.
McGovern
,
J. F.
, and
Sandor
,
G. N.
,
1973
, “
Kinematic Synthesis of Adjustable Mechanisms (Part 1: Function Generation)
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
417
422
.10.1115/1.3438171
13.
McGovern
,
J. F.
, and
Sandor
,
G. N.
,
1973
, “
Kinematic Synthesis of Adjustable Mechanisms (Part 2: Path Generation)
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
423
429
.10.1115/1.3438172
14.
Handra-Luca
,
V.
,
1973
, “
The Study of Adjustable Oscillating Mechanisms
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
677
680
.10.1115/1.3438209
15.
Zhou
,
H.
, and
Ting
,
K.-L.
,
2002
, “
Adjustable Slider-Crank Linkages for Multiple Path Generation
,”
Mech. Mach. Theory
,
37
(
5
), pp.
499
509
.10.1016/S0094-114X(02)00008-3
16.
Xu
,
W.
,
Lewis
,
D.
,
Bronlund
,
J.
, and
Morgenstern
,
M.
,
2008
, “
Mechanism, Design and Motion Control of a Linkage Chewing Device for Food Evaluation
,”
Mech. Mach. Theory
,
43
(
3
), pp.
376
389
.10.1016/j.mechmachtheory.2007.03.004
17.
Grenier
,
M.
, and
Gosselin
,
C.
, “
Kinematic Optimization of a Robotic Joint With Continuously Variable Transmission Ratio
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
, Aug. 28–31, ASME, New York, pp. 513–521.
18.
Patel
,
S. R.
, and
Patel
,
D.
,
2013
, “
Dynamic Analysis of Quick Return Mechanism Using MATLAB
,”
Int. J. Eng. Sci. Innovative Technol.
,
2
(
3
), pp.
346
350
.
19.
Shyu
,
J. H.
,
Chen
,
C. K.
,
Yu
,
C. C.
, and
Luo
,
Y. J.
,
2011
, “
Research and Development of an Adjustable Elliptical Exerciser
,”
Adv. Mater. Res.
,
308
, pp.
2078
2083
.10.4028/www.scientific.net/AMR.308-310.2078
20.
Bai
,
L.
,
Ge
,
W.-j.
,
Chen
,
X.-h.
, and
Meng
,
X.-y.
, “
Hopping Capabilities of a Bio-Inspired and Mininally Actuated Hopping Robot
,”
2011 International Conference on Proceedings of the Electronics, Communications and Control (ICECC)
,
Zhejiang, China
, Sept. 9–11, IEEE, New York, pp.
1485
1489
.
21.
Soong
,
R.-C.
, and
Chang
,
S.-B.
,
2011
, “
Synthesis of Function-Generation Mechanisms Using Variable Length Driving Links
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1696
1706
.10.1016/j.mechmachtheory.2011.06.011
22.
Anirban
,
G.
, and
Amarnath
,
C.
,
2011
, “
Adjustable Mechanism for Walking Robots With Minimum Number of Actuators
,”
Chin. J. Mech. Eng.
,
24
(
5
),
p
. 760.
23.
Nelson
,
C. D.
,
1985
,
Variable Stroke Engine
, U.S. Patent 4,517,931.
24.
Pierce
,
J.
,
1914
,
Variable Stroke Mechanism
, U.S. Patent 1,112,832.
25.
Pouliot
,
H. N.
,
Delameter
,
W. R.
, and
Robinson
,
C. W.
,
1977
, “
A Variable Displacment Spark-Ignition Engine
,” SAE Technical Paper No. 770114, SAE International.
26.
Yamin
,
J. A. A.
, and
Dado
,
M. H.
,
2004
, “
Performance Simulation of a Four-Stroke Engine With Variable Stroke-Length and Compression Ratio
,”
Appl. Energy
,
77
(
4
), pp.
447
463
.10.1016/S0306-2619(03)00004-7
27.
Freudenstein
,
F.
, and
Maki
,
E. R.
,
1981
, “
Variable Displacement Piston Engine
,” U.S. Patent 4,270,495.
28.
Freudenstein
,
F.
, and
Maki
,
E.
,
1983
Development of an Optimum Variable-Stroke Internal-Combustion Engine Mechanism From the Viewpoint of Kinematic Structure
,”
ASME J. Mech., Trans, and Automation
,
105
(
2
), pp.
259
266
.10.1115/1.3258519
29.
Shoup
,
T. E.
,
1984
, “
The Design of an Adjustable, Three Dimensional Slider Crank Mechanism
,”
Mech. Mach. Theory
,
19
(
1
), pp.
107
111
.10.1016/0094-114X(84)90012-0
30.
Wilhelm
,
S.
, and
Van de Ven
,
J. D.
,
2011
, “
Synthesis of a Variable Displacement Linkage for a Hydraulic Transformer
,” Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2011, August 28–31, 2011, Washington, DC, ASME, New York, p.
8
.
31.
Norton
,
R. L.
,
2008
,
Design of Machinery An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
Boston, MA
.
32.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Sythesis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
33.
Alt
,
V. H.
,
1932
, “
The Transmission Angle and Its Importance for the Design of Periodic Mechanisms
,”
Werstattstechnik
,
26
, pp.
61
64
.
You do not currently have access to this content.