A novel, monolithic, contact-aided, displacement-delimited gripper is presented. It is designed to employ contact interactions between its deforming members to delimit the output displacement such that excessive forces on the soft, fragile work-pieces are thwarted. The mechanism is appropriated using the topology, shape, and size optimization algorithm which, in addition to yielding structural details, also determines the interacting members and nature of contact. The symmetric halves of this design can be actuated independently thus rendering it the manipulative capabilities in addition to gripping. A cantilevered flexible “U” structure when introduced between the gripper ports of this mechanism can yield additional benefits in terms of reduced gripping forces. Macroscale Teflon prototype of the mechanism is tested on various work-pieces having different stiffness properties. Using experimentally acquired vision data, reaction loads on the work-pieces and gripper ports are estimated probabilistically by solving a Dirichlet problem for continua undergoing large deformation.

References

1.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2004
, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modelling
,”
Comput. Struct.
,
82
(
15–16
), pp.
1267
1290
.10.1016/j.compstruc.2004.02.024
2.
Weight
,
B. L.
,
2001
, “
Development and Design of Constant Force Mechanisms
,” MS thesis, Brigham Young University, Provo, UT.
3.
Herder
,
J. L.
, and
van den Berg
,
F. P. A.
,
2000
, “
Statically Balanced Compliant Mechanisms (SBCM's), An Example and Prospects
,”
Proceedings of the Design Engineering Technical Conferences and Computer in Engineering Conference
, DETC2000/MECH-14144.
4.
Millar
,
A. J.
,
Howell
,
L. L.
, and
Leonard
,
J. N.
,
1996
, “
Design and Evaluation of Compliant Constant-Force Mechanisms
,”
Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference
, 96-DETC/MECH-1209.
5.
Howell
,
L. L.
,
Midha
,
A.
, and
Murphy
,
M. D.
,
1994
, “
Dimensional Synthesis of Compliant Constant-Force Slider Mechanisms
,”
Proceedings of DETC’94, ASME Design Engineering Technical Conferences,
DETC98/MEMD-71.
6.
Parkinson
,
M. B.
,
Howell
,
L. L.
, and
Cox
,
J. J.
,
1997
, “
A Parametric Approach to the Optimization-Based Design of Compliant Mechanisms
,”
Proceedings of the 23rd Design Automation Conference
, DETC97/DAC-3763.
7.
Reddy
,
A. N.
,
Maheshwari
,
N.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
,
2010
, “
Miniature Compliant Grippers With Vision-Based Force Sensing
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
867
87
7.10.1109/TRO.2010.2056210
8.
Hajhashemi
,
M. S.
,
Barazandeh
,
F.
,
NazariNejad
,
S.
, and
Nadafi
,
D. B. R.
,
2011
, “
Design and Microfabrication of a Constant-Force Microgripper
,”
J. Mech. Eng. Sci.
,
225
(
11
), pp.
2739
2748
10.1177/0954406211404910.
9.
Ashkin
,
1970
, “
Acceleration and Trapping of Particles by Radiation Pressure
,”
Phys. Rev. Lett.
,
24
, pp.
156
159
.10.1103/PhysRevLett.24.156
10.
Nishioka
,
M.
,
Katsura
,
S.
,
Hirano
,
K.
, and
Mizuno
,
A.
,
1997
, “
Evaluation of Cell Characteristics by Step-Wise Orientational Rotation Using Optoelectrostatic Micromanipulation
,”
IEEE Trans. Ind. Appl.
,
33
(
5
), pp.
1381
1388
.10.1109/28.633823
11.
Puig-de-Morales
,
M.
,
Grabulosa
,
M.
,
Alcaraz
,
J.
,
Mullol
,
J.
,
Maksym
,
G. N.
,
Fredberg
,
J. J.
, and
Navajas
,
D.
,
2001
, “
Measurement of Cell Icrorheology by Magnetic Twisting Cytometry With Frequency Domain Demodulation
,”
J. Appl. Physiol.
,
91
, pp.
1152
1159
.
12.
Crick
,
F. H. C.
, and
Hughes
,
A. F. W.
,
1950
, “
The Physical Properties of the Cytoplasm: A Study by the Means of the Magnetic Particle Method
,”
Exp. Cell Res.
,
1
, pp.
37
80
.10.1016/0014-4827(50)90048-6
13.
Yeung
,
A.
, and
Evans
,
E.
,
1989
, “
Cortical Shell-Liquid Core Model for Passive Flow of Liquid-Like Spherical Cells into Micropipettes
,”
Biophys. J.
,
56
, pp.
139
149
.10.1016/S0006-3495(89)82659-1
14.
Tang
,
W. C.
,
Nguyen
,
T. C. H.
, and
Howe
,
R. T.
,
1992
, “
Laterally Driven Polysilicon Resonant Microstructures
,”
Sens. Actuators, A
,
20
(
1–2
), pp.
25
32
.10.1016/0250-6874(89)87098-2
15.
Fan
,
L.
,
Wu
,
M.
,
Choquette
,
K.
, and
Crawford
,
M.
,
1997
, “
Self-Assembled Microactuated XYZ Stages for Optical Scanning and Alignment
,”
International Conference on Solid-State Sensors and Actuators
,
Transducers
, June 16–19, Chicago, pp.
319
322
.
16.
Keller
,
C. G.
, and
Howe
,
R. T.
,
1995
, “
Nickel-Filled Thermally Actuated Tweezers
,”
Transducer 8 International Conference on Solid-State Sensors and Actuators and Eurosensors IX
, June 25–29,
Stockholm, Sweden
, Vol.
2
, pp.
552
555
.
17.
Nogimori
,
W.
,
Irisa
,
K.
,
Ando
,
M.
, and
Naruse
,
Y.
,
1997
, “
A Laser-Powered Microgripper
,”
Proceedings of IEEE Tenth Annual International Workshop
, pp.
267
271
.
18.
Houston
,
K.
,
Eder
,
C.
,
Sieber
,
A.
,
Menciassi
,
A.
,
Carrozza
,
M. C.
, and
Dario
,
P.
,
2007
, “
Polymer Sensorised Microgrippers Using SMA Actuation
,”
IEEE International Conference on Robotics and Automation
, April 10–14,
Roma, Italy
, pp.
820
825
.
19.
Rakotondrabe
,
M.
,
Cl'evy
,
C.
, and
Lutz
,
Ph.
,
2007
, “
Modelling and Robust Position/Force Control of a Piezoelectric Microgripper
,”
Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering
, Sept. 22–25,
Scottsdale, AZ
, pp.
39
44
.
20.
Suzuki
,
Y.
,
1996
, “
Flexible Microgripper and Its Application to Micro-Measurement of Mechanical and Thermal Properties
,”
IEEE MEMS, Proceedings of Ninth Annual International Workshop
, February 11–15,
San Diego, CA
, pp.
406
411
.
21.
Guoliang
,
Ch.
, and
Xinhan
,
H.
,
2004
, “
Research on Vacuum Micro-Gripper of Intelligent Micromanipulation Robots
,”
Proceedings of the IEEE International Conference on Robotics and Biomimetics
,
China
, pp.
279
283
.
22.
Deole
,
U.
, and
Lumia
,
R.
,
2006
, “
Measuring the Load-Carrying Capability of IPMC Microgripper Fingers
,”
Conference (IECON) on Industrial Electronics
, November 7–10,
Paris, France
, pp.
2933
2938
.
23.
Park
,
J.
,
Kim
,
S.
, and
Kim
,
D.-H.
,
2005
, “
Identification and Control of a Sensorized Microgripper for Micromanipulation
,”
IEEE/ASME Trans. Mechatron.
,
10
(
5
), pp.
601
606
.10.1109/TMECH.2005.856103
24.
Wang
,
X.
,
Ananthasuresh
,
G. K.
, and
Ostrowski
,
J. P.
,
2001
, “
Vision-Based Sensing of Forces in Elastic Objects
,”
Sens. Actuators, A
,
94
, pp.
142
156
.10.1016/S0924-4247(01)00705-1
25.
Greminger
,
M. A.
, and
Nelson
,
B. J.
,
2004
, “
Vision-Based Forces Measurement
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
26
(
3
), pp.
290
298
.10.1109/TPAMI.2004.1262305
26.
Kamiyama
,
K.
,
Vlack
,
K.
,
Mizota
,
T.
,
Kajimoto
,
H.
,
Kawakami
,
N.
, and
Tachi
,
S.
,
2005
, “
Vision-Based Sensor for Real Time Measuring of Surface Traction
,”
IEEE Comput. Graph. Appl.
,
25
(
1
), pp.
68
75
.10.1109/MCG.2005.27
27.
Wang
,
W.
,
Liu
,
X.
,
Gelinas
,
D.
,
Ciruna
,
B.
, and
Sun
,
Y.
,
2007
, “
A Fully Automated Robotic System for Microinjection of Zebrafish Embryos
,”
PLoS One
,
2
(
9
), p.
e862
.10.1371/journal.pone.0000862
28.
Cappelleri
,
D.
,
Piazza
,
G.
, and
Kumar
,
V.
,
2009
, “
Two-Dimensional, Vision-Based μn Force Sensor for Microrobotics
,”
IEEE Int. Conf. Robot. Autom.
, May 12–17,
Kobe, Japan
.
29.
Nagendra Reddy
,
B. V. S.
,
Naik
,
S. V.
, and
Saxena
,
A.
,
2010
, “
Systematic Synthesis of Large Displacement Contact Aided Monolithic Compliant Mechanisms
,”
ASME J. Mech. Des.
134
(
1
), p.
011007
10.1115/1.4005326.
30.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2007
, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
,
129
, pp.
1056
1063
10.1115/1.2757191
32.
Reddy
,
A. N.
, and
Ananthasuresh
,
G. K.
,
2008
, “
On Computing the Forces From the Noisy Displacement Data of an Elastic Body
,”
Int. J. Numer. Methods Eng.
,
76
, pp.
1645
1677
.10.1002/nme.2373
33.
Crisfield
,
M. A.
,
1997
,
Non-Linear Finite Element Analysis of Solids and Structures
,
Wiley
,
New York
.
You do not currently have access to this content.