The principles of the freedom and constraint topologies (FACT) synthesis approach are adapted and applied to the design of parallel flexure systems that mimic degrees of freedom (DOFs) primarily achievable by serial flexure systems. FACT provides designers with a comprehensive library of geometric shapes. These shapes enable designers to visualize the regions wherein compliant flexure elements may be placed for achieving desired DOFs. By displacing these shapes far from the point of interest of the stage of a flexure system, designers can compare a multiplicity of concepts that utilizes the advantages of both parallel and serial systems. A complete list of which FACT shapes mimic which DOFs when displaced far from the point of interest of the flexure system's stage is provided as well as an intuitive approach for verifying the completeness of this list. The proposed work intends to cater to the design of precision motion stages, optical mounts, microscopy stages, and general purpose flexure bearings. Two case studies are provided to demonstrate the application of the developed procedure.

References

References
1.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME Press
,
New York, NY
.
2.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
3.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.10.1016/j.precisioneng.2009.06.007
4.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precis. Eng.
,
35
(
4
), pp.
638
649
.10.1016/j.precisioneng.2011.04.006
5.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
6.
Merlet
,
J. P.
,
2000
,
Parallel Robots
,
Kluwer Academic Publishers
,
The Netherlands
.
7.
Klein
,
F.
,
1921
,
Die Allgemeine Lineare Transformation der Linienkoordinaten, Gesammelte math. Abhandlungen I
,
Springer
,
Berlin
.
8.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
London
.
9.
Phillips
,
J.
,
1984
,
Freedom in Machinery
,
Cambridge University Press
,
New York, NY
.
10.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press LLC
,
Boca Raton, FL
.
11.
Bothema
,
R.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
New York
,
Dover
.
12.
Su
,
H.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.10.1115/1.3211024
13.
Su
,
H.
, and
Tari
,
H.
,
2010
, “
Realizing Orthogonal Motions With Wire Flexures Connected in Parallel
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121002
.10.1115/1.4002837
14.
Su
,
H.
, and
Tari
,
H.
,
2011
, “
On Line Screw Systems and Their Application to Flexure Synthesis
,”
J. Mech. Rob.
,
3
(
1
), p.
011009
.10.1115/1.4003078
15.
Merlet
,
J. P.
,
1989
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
45
56
.10.1177/027836498900800504
16.
Hao
,
F.
, and
McCarthy
,
J. M.
,
1998
, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
,
15
(
1
), pp.
43
55
.10.1002/(SICI)1097-4563(199812)15:1<43::AID-ROB4>3.0.CO;2-S
17.
Hopkins
,
J. B.
,
2007
, “
Design of Parallel Flexure Systems Via Freedom and Constraint Topologies (FACT)
,” Masters thesis, Massachusetts Institute of Technology, Cambridge, MA.
18.
Hopkins
,
J. B.
,
2010
, “
Design of Flexure-Based Motion Stages for Mechatronic Systems Via Freedom, Actuation and Constraint Topologies (FACT)
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
19.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2007
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.10.1115/1.2735342
20.
Li
,
Y.
, and
Xu.
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.10.1109/TRO.2009.2014130
21.
Li
,
Y.
, and
Xu
,
Q.
,
2011
, “
A Totally Decoupled Piezo-Driven XYZ Flexure Parallel Micropositioning Stage for Micro/Nanomanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
8
(
2
), pp.
265
279
.10.1109/TASE.2010.2077675
22.
Dimentberg
,
F. M.
,
1968
,
Screw Calculus and Its Applications to Mechanics, Foreign Technology Division
,
WP-APB
,
Ohio
.
23.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems-I, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.10.1016/0094-114X(90)90103-Q
24.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems-II, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
11
27
.10.1016/0094-114X(90)90104-R
25.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems—I: One- and Two-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
459
470
.10.1016/0094-114X(92)90037-I
26.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems—II: Three-Systems
,”
Mech. Mach. Theory
,”
27
(
4
), pp.
471
490
.10.1016/0094-114X(92)90038-J
27.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Orthogonal Spaces and Screw Systems
,”
Mech. Mach. Theory
,”
27
(
4
), pp.
451
458
.10.1016/0094-114X(92)90036-H
28.
Coxeter
,
H. S. M.
,
1987
,
Projective Geometry
,
2nd ed.
,
Springer Press
,
New York
.
29.
Su
,
H.-J.
,
2011
, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
3
(
2
), p.
041010
.10.1115/1.4004910
30.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
A Screw Theory Basis for Quantitative and Graphical Design Tools That Define Layout of Actuators to Minimize Parasitic Errors in Parallel Flexure Systems
,”
Precis. Eng.
,
34
(
4
), pp.
767
776
.10.1016/j.precisioneng.2010.05.004
31.
Hopkins
,
J. B.
, and
Panas
,
R. M.
,
2013
, “
Eliminating Parasitic Error in Dynamically Driven Flexure Systems
,”
Proceedings of the 28th Annual Meeting of the American Society for Precision Engineering
,
St. Paul, MN
.
You do not currently have access to this content.